文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Advances in electrode interface materials and modification technologies for brain-computer interfaces.

作者信息

Jiao Yunke, Lei Miao, Zhu Jianwei, Chang Ronghang, Qu Xue

机构信息

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, China.

Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang Province, China.

出版信息

Biomater Transl. 2023 Dec 28;4(4):213-233. doi: 10.12336/biomatertransl.2023.04.003. eCollection 2023.


DOI:10.12336/biomatertransl.2023.04.003
PMID:38282708
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10817795/
Abstract

Recent advances in neuroelectrode interface materials and modification technologies are reviewed. Brain-computer interface is the new method of human-computer interaction, which not only can realise the exchange of information between the human brain and external devices, but also provides a brand-new means for the diagnosis and treatment of brain-related diseases. The neural electrode interface part of brain-computer interface is an important area for electrical, optical and chemical signal transmission between brain tissue system and external electronic devices, which determines the performance of brain-computer interface. In order to solve the problems of insufficient flexibility, insufficient signal recognition ability and insufficient biocompatibility of traditional rigid electrodes, researchers have carried out extensive studies on the neuroelectrode interface in terms of materials and modification techniques. This paper introduces the biological reactions that occur in neuroelectrodes after implantation into brain tissue and the decisive role of the electrode interface for electrode function. Following this, the latest research progress on neuroelectrode materials and interface materials is reviewed from the aspects of neuroelectrode materials and modification technologies, firstly taking materials as a clue, and then focusing on the preparation process of neuroelectrode coatings and the design scheme of functionalised structures.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/10817795/7d58bcf5bd5b/bt-04-04-213-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/10817795/98a3f1f3f44a/bt-04-04-213-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/10817795/9e8d5f9bc8a7/bt-04-04-213-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/10817795/93f289b97541/bt-04-04-213-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/10817795/45af84ad2206/bt-04-04-213-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/10817795/a0876de037ed/bt-04-04-213-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/10817795/cbc7730ae6d9/bt-04-04-213-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/10817795/ebcea60eb85a/bt-04-04-213-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/10817795/403eae222793/bt-04-04-213-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/10817795/7d58bcf5bd5b/bt-04-04-213-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/10817795/98a3f1f3f44a/bt-04-04-213-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/10817795/9e8d5f9bc8a7/bt-04-04-213-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/10817795/93f289b97541/bt-04-04-213-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/10817795/45af84ad2206/bt-04-04-213-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/10817795/a0876de037ed/bt-04-04-213-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/10817795/cbc7730ae6d9/bt-04-04-213-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/10817795/ebcea60eb85a/bt-04-04-213-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/10817795/403eae222793/bt-04-04-213-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c508/10817795/7d58bcf5bd5b/bt-04-04-213-g009.jpg

相似文献

[1]
Advances in electrode interface materials and modification technologies for brain-computer interfaces.

Biomater Transl. 2023-12-28

[2]
Improving the Biocompatibility and Functionality of Neural Interface Devices with Silica Nanoparticles.

Acc Chem Res. 2024-6-18

[3]
Biofabrication of a Low Modulus Bioelectroprobe for Neurons to Grow Into.

Materials (Basel). 2021-8-21

[4]
Optimizing the neuron-electrode interface for chronic bioelectronic interfacing.

Neurosurg Focus. 2020-7

[5]
Bioactive polymer-enabled conformal neural interface and its application strategies.

Mater Horiz. 2023-3-6

[6]
Recent progress of electroactive interface in neural engineering.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023-1

[7]
Laser-Induced Periodic Surface Structure Enhances Neuroelectrode Charge Transfer Capabilities and Modulates Astrocyte Function.

ACS Biomater Sci Eng. 2020-3-9

[8]
Analysis of a poly(ε-decalactone)/silver nanowire composite as an electrically conducting neural interface biomaterial.

BMC Biomed Eng. 2019-4-15

[9]
Research Progress on the Flexibility of an Implantable Neural Microelectrode.

Micromachines (Basel). 2022-2-28

[10]
Attenuated Glial Reactivity on Topographically Functionalized Poly(3,4-Ethylenedioxythiophene):P-Toluene Sulfonate (PEDOT:PTS) Neuroelectrodes Fabricated by Microimprint Lithography.

Small. 2018-6-3

引用本文的文献

[1]
Converging technologies in biomaterial translational research.

Biomater Transl. 2023-12-28

本文引用的文献

[1]
A Soft, High-Density Neuroelectronic Array.

Npj Flex Electron. 2023

[2]
Simultaneous Presentation of Dexamethasone and Nerve Growth Factor via Layered Carbon Nanotubes and Polypyrrole to Interface Neural Cells.

ACS Biomater Sci Eng. 2023-8-14

[3]
Liquid Metal-Based Electrode Array for Neural Signal Recording.

Bioengineering (Basel). 2023-5-10

[4]
Focused Epicranial Brain Stimulation by Spatial Sculpting of Pulsed Electric Fields Using High Density Electrode Arrays.

Adv Sci (Weinh). 2023-7

[5]
Large-Area Field Potential Imaging Having Single Neuron Resolution Using 236 880 Electrodes CMOS-MEA Technology.

Adv Sci (Weinh). 2023-7

[6]
Fast Reconfigurable Electrode Array Based on Titanium Oxide for Localized Stimulation of Cultured Neural Network.

ACS Appl Mater Interfaces. 2023-4-19

[7]
Sensing and Stimulation Applications of Carbon Nanomaterials in Implantable Brain-Computer Interface.

Int J Mol Sci. 2023-3-8

[8]
Sulfobetaine-based ultrathin coatings as effective antifouling layers for implantable neuroprosthetic devices.

Biosens Bioelectron. 2023-4-15

[9]
Design of adhesive conducting PEDOT-MeOH:PSS/PDA neural interface via electropolymerization for ultrasmall implantable neural microelectrodes.

J Colloid Interface Sci. 2023-5-15

[10]
Robust Neural Interfaces with Photopatternable, Bioadhesive, and Highly Conductive Hydrogels for Stable Chronic Neuromodulation.

ACS Nano. 2023-1-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索