Suppr超能文献

基于堆叠集成方法的帕金森病早期检测

Early detection of Parkinson disease using stacking ensemble method.

作者信息

Biswas Saroj Kumar, Nath Boruah Arpita, Saha Rajib, Raj Ravi Shankar, Chakraborty Manomita, Bordoloi Monali

机构信息

Computer Science and Engineering Department, National Institute of Technology, Silchar, India.

School of Computer Science and Engineering, VIT-AP University, Amaravathi, India.

出版信息

Comput Methods Biomech Biomed Engin. 2023 Apr;26(5):527-539. doi: 10.1080/10255842.2022.2072683. Epub 2022 May 19.

Abstract

Parkinson's disease (PD) is a common progressive neurodegenerative disorder that occurs due to corrosion of the substantianigra, located in the thalamic region of the human brain, and is responsible for the transmission of neural signals throughout the human body using brain chemical, termed as "dopamine." Diagnosis of PD is difficult, as it is often affected by the characteristics of the medical data of the patients, which include the presence of various indicators, imbalance cases of patients' data records, similar cases of healthy/affected persons, etc. Hence, sometimes the process of diagnosis may also be affected by human error. To overcome this problem some intelligent models have been proposed; however, most of them are single classifier-based models and due to this these models cannot handle noisy and imbalanced data properly and thus sometimes overfit the model. To reduce bias and variance, and to avoid overfitting of a single classifier-based model, this paper proposes an ensemble-based PD diagnosis model, named Ensembled Expert System for Diagnosis of Parkinson's Disease (EESDPD) with relevant features and a simple stacking ensemble technique. The proposed EESDPD aggregates diverse assumptions for making the prediction. The performance of the proposed EESDPD is compared with the performances of logistic regression, SVM, Naïve Bayes, Random Forest, XGBoost, simple Decision Tree, B-TDS-PD and B-TESM-PD in terms of classification accuracy, precision, recall and F1-score measures.

摘要

帕金森病(PD)是一种常见的进行性神经退行性疾病,它是由于位于人脑丘脑区域的黑质受损而引发的,黑质负责利用被称为“多巴胺”的脑化学物质在人体中传递神经信号。帕金森病的诊断很困难,因为它常常受到患者医学数据特征的影响,这些特征包括各种指标的存在、患者数据记录的不平衡情况、健康/患病者的相似病例等。因此,有时诊断过程也可能受到人为误差的影响。为了克服这个问题,人们提出了一些智能模型;然而,它们大多数是基于单一分类器的模型,正因为如此,这些模型无法妥善处理有噪声和不平衡的数据,从而有时会使模型过度拟合。为了减少偏差和方差,并避免基于单一分类器的模型过度拟合,本文提出了一种基于集成的帕金森病诊断模型,名为帕金森病诊断集成专家系统(EESDPD),它具有相关特征和一种简单的堆叠集成技术。所提出的EESDPD汇总各种假设以进行预测。在所提出的EESDPD的性能与逻辑回归、支持向量机、朴素贝叶斯、随机森林、XGBoost、简单决策树、B - TDS - PD和B - TESM - PD的性能在分类准确率、精确率、召回率和F1分数度量方面进行了比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验