Tseng Alex C, Sakata Toshiya
Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
ACS Appl Mater Interfaces. 2022 Jun 1;14(21):24729-24740. doi: 10.1021/acsami.2c01779. Epub 2022 May 19.
In composite hydrogels, the high electrical performance of poly(3,4-ethylenedioxythiophene) complexed with poly(styrenesulfonate) (PEDOT:PSS) is integrated with complementary structural and electrochemical functions via a rationally designed poly(acrylamide) second network incorporating phenylboronic acid (PBA). Free-standing double-network hydrogels prepared by a simple one-pot radical polymerization exhibit state-of-the-art electrical conductivity (∼20 S cm in phosphate buffered saline) while retaining a degree of hydration similar to that of biological soft tissues. Low resistance contacts to Au electrodes are formed via facile thermo-mechanical annealing and demonstrate stability over a month of continuous immersion, thus enabling hydrogels to serve as channels of organic electrochemical transistors (OECTs). Despite thicknesses of ∼100 μm, gating of hydrogel OECTs is efficient with transconductances ∼ 40 mS and on/off ratios of 10 in saturation mode operation, whereas sufficiently high conductivity enables linear mode operation ( ∼ 1 mS at -10 mV drain bias). This drives a shift of sensing strategy toward detection of electrochemical signals originating within the bulky channel. A kinetic basis for glucose detection via diol esterification on PBA is identified as the coupling of PBA equilibrium to electrocatalyzed O reduction occurring on PEDOT in cathodic potentials. Hydrogel OECTs inherently amplify this direct electrochemical signal, demonstrating the viability of a new class of soft, structural biosensors.
在复合水凝胶中,与聚(苯乙烯磺酸盐)络合的聚(3,4 - 乙撑二氧噻吩)(PEDOT:PSS)的高电性能通过合理设计的包含苯基硼酸(PBA)的聚(丙烯酰胺)第二网络与互补的结构和电化学功能相结合。通过简单的一锅自由基聚合制备的独立双网络水凝胶表现出先进的电导率(在磷酸盐缓冲盐水中约为20 S/cm),同时保持与生物软组织相似的水合程度。通过简便的热机械退火形成与金电极的低电阻接触,并在连续浸泡一个月以上时表现出稳定性,从而使水凝胶能够用作有机电化学晶体管(OECT)的通道。尽管厚度约为100μm,但水凝胶OECT的门控效率很高,跨导约为40 mS,在饱和模式操作下的开/关比为10,而足够高的电导率使得能够进行线性模式操作(在 - 10 mV漏极偏压下约为1 mS)。这推动了传感策略向检测源自庞大通道内的电化学信号的转变。通过PBA上的二醇酯化进行葡萄糖检测的动力学基础被确定为PBA平衡与在阴极电位下PEDOT上发生的电催化氧还原的耦合。水凝胶OECT本质上放大了这种直接电化学信号,证明了一类新型软结构生物传感器的可行性。