Suppr超能文献

基于原子反应分子动力学模拟的化学动力学模型开发:应用于异辛烷燃烧和橡胶烧蚀降解

Development of Chemical Kinetics Models from Atomistic Reactive Molecular Dynamics Simulations: Application to Iso-octane Combustion and Rubber Ablative Degradation.

作者信息

Sasikumar Kiran, Ranganathan Raghavan, Rokkam Srujan, Desai Tapan, Burnes Richard, Cross Peter

机构信息

Advanced Cooling Technologies, Inc., Lancaster, Pennsylvania 17601, United States.

Naval Air Warfare Center, 1900 Knox Road, China Lake, California 93555, United States.

出版信息

J Phys Chem A. 2022 Jun 2;126(21):3358-3372. doi: 10.1021/acs.jpca.2c00901. Epub 2022 May 19.

Abstract

Modeling the complex chemical phenomena resulting from multiple active species and long-chain polymers is limited by uncertainties in the reaction rate parameters, which increase rapidly with the number of active species and/or reaction pathways. Reactive molecular dynamics simulations have the potential to help obtain in-depth information on the chemical reactions that occur between the polymer (e.g., ablative material) and the multiple active species in an aggressive environment. In this work, we demonstrate that molecular dynamics (MD) simulations using the ReaxFF interatomic potential can be used to obtain the reaction kinetics of complex reaction pathways at high temperatures. We report two recently developed tools, namely, and , designed to extract chemical kinetic pathways by postprocessing reactive MD simulation data. The pathway extraction is based on a new algorithm, Consistent Reaction Stoichiometry via an Iterative Scheme (CReSIS), for the automated extraction of reactions and kinetics from MD trajectories. As a validation of the methodology, we first report the kinetic analysis and mechanisms for the high-temperature combustion of iso-octane. The observed reaction pathways are consistent with experimental models. In addition, we compare the activation energies of select iso-octane combustion pathways with experimental data and show that nanosecond timescale molecular dynamics simulations are sufficient to obtain realistic estimates of activation energies for different fuel consumption reaction pathways at high temperatures. The framework developed here can potentially be combined with time-series forecasting and machine learning methods to further reduce the computational complexity of transient molecular dynamics simulations, yet yielding realistic chemical kinetics information. Subsequently, the CReSIS scheme applied to ethylene-propylene-diene-monomer (EPDM) rubber ablative reveals that HO, CH, and HCHO are the major products during the initial stages of the polymer degradation in high-temperature oxidative environments. While prior work involving ReaxFF simulations is restricted to overall rates of formation of any species, we extract kinetic information for individual reaction pathways. In this paper, we present several reaction pathways observed during the EPDM rubber degradation into the dominant products and report the pathway-specific reaction rates. Arrhenius analysis reveals that the dominant reaction pathway activation energies for the formation of water, ethylene, and formaldehyde are 34.42, 27.26, and 6.37 kcal/mol, respectively. In contrast, the activation energies for the overall formation (across all reaction pathways) of these products are in the 40-50 kcal/mol range.

摘要

对由多种活性物种和长链聚合物产生的复杂化学现象进行建模,受到反应速率参数不确定性的限制,这种不确定性会随着活性物种数量和/或反应途径的增加而迅速增大。反应分子动力学模拟有潜力帮助获取聚合物(如烧蚀材料)与恶劣环境中的多种活性物种之间发生的化学反应的深入信息。在这项工作中,我们证明了使用ReaxFF原子间势的分子动力学(MD)模拟可用于获取高温下复杂反应途径的反应动力学。我们报告了两个最近开发的工具,即 和 ,旨在通过对反应性MD模拟数据进行后处理来提取化学动力学途径。途径提取基于一种新算法,即通过迭代方案的一致反应化学计量法(CReSIS),用于从MD轨迹中自动提取反应和动力学。作为该方法的验证,我们首先报告异辛烷高温燃烧的动力学分析和机理。观察到的反应途径与实验模型一致。此外,我们将选定的异辛烷燃烧途径的活化能与实验数据进行比较,结果表明纳秒时间尺度的分子动力学模拟足以获得高温下不同燃料消耗反应途径活化能的实际估计值。这里开发的框架有可能与时间序列预测和机器学习方法相结合,以进一步降低瞬态分子动力学模拟的计算复杂度,同时产生实际的化学动力学信息。随后,将CReSIS方案应用于乙烯-丙烯-二烯-单体(EPDM)橡胶烧蚀,结果表明在高温氧化环境中,聚合物降解的初始阶段,HO、CH和HCHO是主要产物。虽然之前涉及ReaxFF模拟的工作仅限于任何物种的总体生成速率,但我们提取了各个反应途径的动力学信息。在本文中,我们展示了EPDM橡胶降解为主产物过程中观察到的几种反应途径,并报告了特定途径的反应速率。阿仑尼乌斯分析表明,生成水、乙烯和甲醛的主要反应途径活化能分别为34.42、27.26和6.37千卡/摩尔。相比之下,这些产物总体生成(跨所有反应途径)的活化能在40 - 50千卡/摩尔范围内。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验