文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

STING 激动剂与 IL-2 超激动剂在 MHC I 缺陷和 MHC I 肿瘤的癌症免疫治疗中的协同作用。

Synergy of a STING agonist and an IL-2 superkine in cancer immunotherapy against MHC I-deficient and MHC I tumors.

机构信息

Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720.

HHMI, Stanford University School of Medicine, Stanford, CA 94305.

出版信息

Proc Natl Acad Sci U S A. 2022 May 31;119(22):e2200568119. doi: 10.1073/pnas.2200568119. Epub 2022 May 19.


DOI:10.1073/pnas.2200568119
PMID:35588144
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9295797/
Abstract

Cyclic dinucleotides (CDN) and Toll-like receptor (TLR) ligands mobilize antitumor responses by natural killer (NK) cells and T cells, potentially serving as complementary therapies to immune checkpoint therapy. In the clinic thus far, however, CDN therapy targeting stimulator of interferon genes (STING) protein has yielded mixed results, perhaps because it initiates responses potently but does not provide signals to sustain activation and proliferation of activated cytotoxic lymphocytes. To improve efficacy, we combined CDN with a half life-extended interleukin-2 (IL-2) superkine, H9-MSA (mouse serum albumin). CDN/H9-MSA therapy induced dramatic long-term remissions of the most difficult to treat major histocompatibility complex class I (MHC I)–deficient and MHC I+ tumor transplant models. H9-MSA combined with CpG oligonucleotide also induced potent responses. Mechanistically, tumor elimination required CD8 T cells and not NK cells in the case of MHC I+ tumors and NK cells but not CD8 T cells in the case of MHC-deficient tumors. Furthermore, combination therapy resulted in more prolonged and more intense NK cell activation, cytotoxicity, and expression of cytotoxic effector molecules in comparison with monotherapy. Remarkably, in a primary autochthonous sarcoma model that is refractory to PD-1 checkpoint therapy, the combination of CDN/H9-MSA with checkpoint therapy yielded long-term remissions in the majority of the animals, mediated by T cells and NK cells. This combination therapy has the potential to activate responses in tumors resistant to current therapies and prevent MHC I loss accompanying acquired resistance of tumors to checkpoint therapy.

摘要

环二核苷酸 (CDN) 和 Toll 样受体 (TLR) 配体通过自然杀伤 (NK) 细胞和 T 细胞动员抗肿瘤反应,可能作为免疫检查点治疗的补充疗法。然而,迄今为止,针对干扰素基因刺激蛋白 (STING) 的 CDN 治疗产生了混合结果,这可能是因为它强烈启动反应,但不能提供信号来维持激活和增殖的细胞毒性淋巴细胞。为了提高疗效,我们将 CDN 与半衰期延长的白细胞介素 2 (IL-2) 超激动剂 H9-MSA(鼠血清白蛋白)结合。CDN/H9-MSA 治疗诱导了最难以治疗的主要组织相容性复合体 I (MHC I) 缺陷和 MHC I+肿瘤移植模型的戏剧性长期缓解。H9-MSA 与 CpG 寡核苷酸联合也诱导了强烈的反应。从机制上讲,对于 MHC I+肿瘤,需要 CD8 T 细胞而不是 NK 细胞来消除肿瘤,而对于 MHC 缺陷肿瘤,则需要 NK 细胞而不是 CD8 T 细胞。此外,与单药治疗相比,联合治疗导致 NK 细胞激活、细胞毒性和细胞毒性效应分子表达更持久、更强烈。值得注意的是,在对 PD-1 检查点治疗有抗性的原发性同源肉瘤模型中,CDN/H9-MSA 与检查点治疗的组合在大多数动物中产生了长期缓解,由 T 细胞和 NK 细胞介导。这种联合治疗有可能激活对当前治疗有抗性的肿瘤的反应,并防止肿瘤对检查点治疗获得性耐药时 MHC I 的丧失。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e102/9295797/9bbe4d75072c/pnas.2200568119fig07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e102/9295797/7e925ae68507/pnas.2200568119fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e102/9295797/9cf361b8d7d3/pnas.2200568119fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e102/9295797/af1d59001a2f/pnas.2200568119fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e102/9295797/5dbf600ead18/pnas.2200568119fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e102/9295797/7e1832952021/pnas.2200568119fig05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e102/9295797/13637394ca8a/pnas.2200568119fig06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e102/9295797/9bbe4d75072c/pnas.2200568119fig07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e102/9295797/7e925ae68507/pnas.2200568119fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e102/9295797/9cf361b8d7d3/pnas.2200568119fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e102/9295797/af1d59001a2f/pnas.2200568119fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e102/9295797/5dbf600ead18/pnas.2200568119fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e102/9295797/7e1832952021/pnas.2200568119fig05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e102/9295797/13637394ca8a/pnas.2200568119fig06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e102/9295797/9bbe4d75072c/pnas.2200568119fig07.jpg

相似文献

[1]
Synergy of a STING agonist and an IL-2 superkine in cancer immunotherapy against MHC I-deficient and MHC I tumors.

Proc Natl Acad Sci U S A. 2022-5-31

[2]
NK cells mediate clearance of CD8 T cell-resistant tumors in response to STING agonists.

Sci Immunol. 2020-3-20

[3]
Cytokine therapy reverses NK cell anergy in MHC-deficient tumors.

J Clin Invest. 2014-11

[4]
CD4 T Cell and NK Cell Interplay Key to Regression of MHC Class I Tumors upon TLR7/8 Agonist Therapy.

Cancer Immunol Res. 2017-6-21

[5]
Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy.

Cell Res. 2020-11

[6]
STING agonist loaded lipid nanoparticles overcome anti-PD-1 resistance in melanoma lung metastasis via NK cell activation.

J Immunother Cancer. 2021-7

[7]
Combination doxorubicin and interferon-α therapy stimulates immunogenicity of murine pancreatic cancer Panc02 cells via up-regulation of NKG2D ligands and MHC class I.

Asian Pac J Cancer Prev. 2014

[8]
Discovery and development of ANV419, an IL-2/anti-IL-2 antibody fusion protein with potent CD8+ T and natural killer cell-stimulating capacity for cancer immunotherapy.

MAbs. 2024

[9]
Identification of Novel Carbocyclic Pyrimidine Cyclic Dinucleotide STING Agonists for Antitumor Immunotherapy Using Systemic Intravenous Route.

J Med Chem. 2021-5-27

[10]
Tumor-targeted interleukin-12 synergizes with entinostat to overcome PD-1/PD-L1 blockade-resistant tumors harboring MHC-I and APM deficiencies.

J Immunother Cancer. 2022-6

引用本文的文献

[1]
Unlocking the therapeutic potential of the STING signaling pathway in anti-tumor treatment.

Clin Exp Med. 2025-8-12

[2]
Toll-Like Receptors in the Immunotherapy Era: Dual-Edged Swords of Tumor Immunity and Clinical Translation.

MedComm (2020). 2025-7-27

[3]
Improvement of the Anticancer Efficacy of PD-1/PD-L1 Blockade: Advances in Molecular Mechanisms and Therapeutic Strategies.

MedComm (2020). 2025-7-15

[4]
Peptide-MHC I regulatory mechanisms and intervention strategies in anti-tumor T cell immunity.

Acta Pharmacol Sin. 2025-5-16

[5]
STING Agonists and How to Reach Their Full Potential in Cancer Immunotherapy.

Adv Sci (Weinh). 2025-5

[6]
Neoleukin-2/15-armored CAR-NK cells sustain superior therapeutic efficacy in solid tumors via c-Myc/NRF1 activation.

Signal Transduct Target Ther. 2025-3-3

[7]
Coordinating interleukin-2 encoding circRNA with immunomodulatory lipid nanoparticles to potentiate cancer immunotherapy.

Sci Adv. 2025-2-28

[8]
Differential Response to Local Stimulator of Interferon Genes Agonist Administration in Tumors with Various Stimulator of Interferon Genes Statuses.

Cancers (Basel). 2025-1-8

[9]
Regulation of cGAS-STING signalling and its diversity of cellular outcomes.

Nat Rev Immunol. 2025-1-7

[10]
Human NK cells and cancer.

Oncoimmunology. 2024

本文引用的文献

[1]
The Next Decade of Immune Checkpoint Therapy.

Cancer Discov. 2021-4

[2]
Restoring IL-2 to its cancer immunotherapy glory.

Nat Rev Drug Discov. 2021-3

[3]
Immunotherapy for sarcomas: new frontiers and unveiled opportunities.

J Immunother Cancer. 2021-2

[4]
Nucleic Acid Sensors as Therapeutic Targets for Human Disease.

Immunity. 2020-7-14

[5]
Revisiting the role of CD4 T cells in cancer immunotherapy-new insights into old paradigms.

Cancer Gene Ther. 2021-2

[6]
NK cells mediate clearance of CD8 T cell-resistant tumors in response to STING agonists.

Sci Immunol. 2020-3-20

[7]
Tumour-intrinsic resistance to immune checkpoint blockade.

Nat Rev Immunol. 2019-9-30

[8]
Magnitude of Therapeutic STING Activation Determines CD8 T Cell-Mediated Anti-tumor Immunity.

Cell Rep. 2018-12-11

[9]
Tumor-Derived cGAMP Triggers a STING-Mediated Interferon Response in Non-tumor Cells to Activate the NK Cell Response.

Immunity. 2018-10-16

[10]
A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments.

Nat Med. 2018-6-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索