Suppr超能文献

一种基于渗透和灌注的 PBPK 模型,可改善浓度-时间曲线的预测。

A permeability- and perfusion-based PBPK model for improved prediction of concentration-time profiles.

机构信息

Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA.

出版信息

Clin Transl Sci. 2022 Aug;15(8):2035-2052. doi: 10.1111/cts.13314. Epub 2022 May 31.

Abstract

To improve predictions of concentration-time (C-t) profiles of drugs, a new physiologically based pharmacokinetic modeling framework (termed 'PermQ') has been developed. This model includes permeability into and out of capillaries, cell membranes, and intracellular lipids. New modeling components include (i) lumping of tissues into compartments based on both blood flow and capillary permeability, and (ii) parameterizing clearances in and out of membranes with apparent permeability and membrane partitioning values. Novel observations include the need for a shallow distribution compartment particularly for bases. C-t profiles were modeled for 24 drugs (7 acidic, 5 neutral, and 12 basic) using the same experimental inputs for three different models: Rodgers and Rowland (RR), a perfusion-limited membrane-based model (K ), and PermQ. K and PermQ can be directly compared since both models have identical tissue partition coefficient parameters. For the 24 molecules used for model development, errors in V and t were reduced by 37% and 43%, respectively, with the PermQ model. Errors in C-t profiles were reduced (increased EOC) by 43%. The improvement was generally greater for bases than for acids and neutrals. Predictions were improved for all 3 models with the use of parameters optimized for the PermQ model. For five drugs in a test set, similar results were observed. These results suggest that prediction of C-t profiles can be improved by including capillary and cellular permeability components for all tissues.

摘要

为了提高药物浓度-时间(C-t)曲线的预测能力,开发了一种新的基于生理的药代动力学建模框架(称为“PermQ”)。该模型包括药物在毛细血管内外、细胞膜内外以及细胞内脂质中的渗透。新的建模组件包括:(i)根据血流和毛细血管通透性将组织分为隔室;(ii)用表观渗透系数和膜分配系数对进出膜的清除率进行参数化。新的观察结果包括需要一个浅层分布隔室,特别是对于碱基。使用三种不同模型的相同实验输入,对 24 种药物(7 种酸性、5 种中性和 12 种碱性)进行 C-t 曲线建模:Rodgers 和 Rowland(RR)、基于灌注限制的膜模型(K)和 PermQ。由于这两个模型具有相同的组织分配系数参数,因此可以直接比较 K 和 PermQ。对于用于模型开发的 24 种分子,PermQ 模型使 V 和 t 的误差分别降低了 37%和 43%。C-t 曲线的误差(增加的 EOC)降低了 43%。对于碱基,这种改进通常比酸和中性物质更大。使用为 PermQ 模型优化的参数,所有 3 种模型的预测都得到了改善。在一个测试集中的五种药物中,观察到了类似的结果。这些结果表明,通过为所有组织纳入毛细血管和细胞通透性组件,可以改善 C-t 曲线的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afab/9372417/f1cea61c224d/CTS-15-2035-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验