National Academy of Agriculture Green Development, Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China.
Department of Sustainable Development, Environmental Science and Engineering (SEED), KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
Sci Total Environ. 2022 Sep 10;838(Pt 2):155997. doi: 10.1016/j.scitotenv.2022.155997. Epub 2022 May 17.
Synergies to achieve high phosphorus (P) use efficiency (PUE) and mitigate greenhouse gas (GHG) emissions are critical for developing strategies aimed toward agricultural green development. However, the potential effects of such synergies in the entire P supply chain through optimizing P management in crop production are poorly understood. In this study, a partial life cycle of a GHG emissions model was developed to quantify the P-related GHG emissions in the entire P supply chain in China. Our results showed that 16.3 kg CO-equivalent (CO-eq) was produced from the entire P supply chain per unit of P used for grain agriculture (maize, rice, and wheat). P-related GHG emissions in China increased more than five-fold from 1980 (7.2 Tg CO-eq) to 2018 (44.9 Tg CO-eq). GHG emissions were found to be strongly associated with the intensity of grain production in China, and they varied considerably across production regions owing to the differences in the P fertilizer production efficiency. Mineral P fertilizer use in crop production was the primary source of P-related GHG emissions. The results suggest that sustainable P management by matching mineral P fertilizer rates and fertilizer types with crop needs can mitigate GHG emissions by 10.8-27.7 Tg (24.0-65.1%). Moreover, this can improve PUE and reduce mineral P input by 0.7-1.4 Tg (24.0-46.0%). These findings highlight that potential synergies between high PUE and low P-related GHG emissions can be achieved via sustainable P management, thereby enhancing green agricultural development in China and other regions worldwide.
协同作用对于实现高磷(P)利用效率(PUE)和减少温室气体(GHG)排放至关重要,这对于制定旨在实现农业绿色发展的战略具有重要意义。然而,通过优化作物生产中的 P 管理来实现整个 P 供应链的协同作用的潜在影响尚不清楚。在本研究中,开发了一个 GHG 排放模型的部分生命周期,以量化中国整个 P 供应链中与 P 相关的 GHG 排放。我们的研究结果表明,中国每单位用于粮食农业(玉米、水稻和小麦)的 P 就会产生 16.3 公斤二氧化碳当量(CO-eq)。1980 年以来,中国与 P 相关的 GHG 排放量增加了五倍以上,从 7.2 太克二氧化碳当量增加到 2018 年的 44.9 太克二氧化碳当量。GHG 排放与中国粮食生产的强度密切相关,由于 P 肥料生产效率的差异,不同生产地区的 GHG 排放差异很大。作物生产中矿物 P 肥料的使用是与 P 相关的 GHG 排放的主要来源。结果表明,通过使矿物 P 肥料用量和肥料类型与作物需求相匹配,实现可持续的 P 管理,可以减少 10.8-27.7 太克(24.0-65.1%)的 GHG 排放。此外,这可以提高 PUE 并减少 0.7-1.4 太克(24.0-46.0%)的矿物 P 投入。这些发现强调,通过可持续的 P 管理可以实现 PUE 高和与 P 相关的 GHG 排放低之间的潜在协同作用,从而增强中国和其他全球地区的绿色农业发展。