Suppr超能文献

用于低功耗传感器融合的基于硫化锡忆阻晶体管的数模混合计算。

Analog-digital hybrid computing with SnS memtransistor for low-powered sensor fusion.

作者信息

Rehman Shania, Khan Muhammad Farooq, Kim Hee-Dong, Kim Sungho

机构信息

Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, 05006, Korea.

出版信息

Nat Commun. 2022 May 19;13(1):2804. doi: 10.1038/s41467-022-30564-5.

Abstract

Algorithms for intelligent drone flights based on sensor fusion are usually implemented using conventional digital computing platforms. However, alternative energy-efficient computing platforms are required for robust flight control in a variety of environments to reduce the burden on both the battery and computing power. In this study, we demonstrated an analog-digital hybrid computing platform based on SnS memtransistors for low-power sensor fusion in drones. The analog Kalman filter circuit with memtransistors facilitates noise removal to accurately estimate the rotation of the drone by combining sensing data from the gyroscope and accelerometer. We experimentally verified that the power consumption of our hybrid computing-based Kalman filter is only 1/4 of that of the traditional software-based Kalman filter.

摘要

基于传感器融合的智能无人机飞行算法通常使用传统数字计算平台来实现。然而,为了在各种环境中实现稳健的飞行控制,以减轻电池和计算能力的负担,需要替代的节能计算平台。在本研究中,我们展示了一种基于硫化亚锡忆阻晶体管的模拟-数字混合计算平台,用于无人机中的低功耗传感器融合。带有忆阻晶体管的模拟卡尔曼滤波器电路通过结合来自陀螺仪和加速度计的传感数据,有助于去除噪声,从而准确估计无人机的旋转。我们通过实验验证,基于混合计算的卡尔曼滤波器的功耗仅为传统基于软件的卡尔曼滤波器的四分之一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b90/9119935/3ea8a59dcfac/41467_2022_30564_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验