Suppr超能文献

用于将滞后最小化的1V工作二维过渡金属二硫属化物晶体管的聚合物/氧化物双层电介质

Polymer/oxide bilayer dielectric for hysteresis-minimized 1 V operating 2D TMD transistors.

作者信息

Yoon Minho, Ko Kyeong Rok, Min Sung-Wook, Im Seongil

机构信息

Institute of Physics and Applied Physics, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 120-749 Korea

出版信息

RSC Adv. 2018 Jan 12;8(6):2837-2843. doi: 10.1039/c7ra12641g.

Abstract

Despite their huge impact on future electronics, two-dimensional (2D) dichalcogenide semiconductor (TMD) based transistors suffer from the hysteretic characteristics induced by the defect traps located at the dielectric/TMD channel interface. Here, we introduce a hydroxyl-group free organic dielectric divinyl-tetramethyldisiloxane-bis (benzocyclobutene) (BCB) between the channel and conventional SiO dielectric, to practically resolve such issues. Our results demonstrate that the electrical hysteresis in the n-channel MoS and p-channel MoTe transistors were significantly reduced to less than ∼20% of initial value after being treated with hydrophobic BCB dielectric while their mobilities increased by factor of two. Such improvements are certainly attributed to the use of the hydroxyl-group free organic dielectric, since high density interface traps are related to hydroxyl-groups located on hydrophilic SiO. This concept of interface trap reduction is extended to stable low voltage operation in 2D MoTe FET with 30 nm BCB/10 nm AlO bilayer dielectric, which operates well at 1 V. We conclude that the interface engineering employing the BCB dielectric offers practical benefits for the high performance and stable operation of TMD-based transistors brightening the future of 2D TMD electronics.

摘要

尽管二维(2D)二硫族化物半导体(TMD)基晶体管对未来电子学有着巨大影响,但位于电介质/TMD沟道界面处的缺陷陷阱会导致其具有滞后特性。在此,我们在沟道与传统SiO电介质之间引入一种无羟基的有机电介质二乙烯基 - 四甲基二硅氧烷 - 双(苯并环丁烯)(BCB),以切实解决此类问题。我们的结果表明,在经过疏水性BCB电介质处理后,n沟道MoS和p沟道MoTe晶体管中的电滞现象显著降低至初始值的约20%以下,同时它们的迁移率提高了两倍。这些改进无疑归因于使用了无羟基的有机电介质,因为高密度界面陷阱与亲水性SiO上的羟基有关。这种降低界面陷阱的概念被扩展到具有30 nm BCB/10 nm AlO双层电介质的2D MoTe场效应晶体管(FET)中的稳定低电压操作,该晶体管在1 V电压下运行良好。我们得出结论,采用BCB电介质的界面工程为基于TMD的晶体管的高性能和稳定运行带来了实际益处,照亮了二维TMD电子学的未来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a579/9077681/4e01615272c4/c7ra12641g-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验