Suppr超能文献

使用深度神经网络对质子-质子碰撞中带电粒子多重性和横向动量分布进行建模。

Modeling of charged-particle multiplicity and transverse-momentum distributions in pp collisions using a DNN.

作者信息

Shokr E, De Roeck A, Mahmoud M A

机构信息

Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt.

CERN, Geneva, Switzerland.

出版信息

Sci Rep. 2022 May 19;12(1):8449. doi: 10.1038/s41598-022-11618-6.

Abstract

A machine learning technique is used to fit multiplicity distributions in high energy proton-proton collisions and applied to make predictions for collisions at higher energies. The method is tested with Monte Carlo event generators. Charged-particle multiplicity and transverse-momentum distributions within different pseudorapidity intervals in proton-proton collisions were simulated using the PYTHIA event generator for center of mass energies [Formula: see text]= 0.9, 2.36, 2.76, 5, 7, 8, 13 TeV for model training and validation and at 10, 20, 27, 50, 100 and 150 TeV for model predictions. Comparisons are made in order to ensure the model reproduces the relation between input variables and output distributions for the charged particle multiplicity and transverse-momentum. The multiplicity and transverse-momentum distributions are described and predicted very well, not only in the case of the trained but also in the case of untrained energy values. The study proposes a way to predict multiplicity distributions at a new energy by extrapolating the information inherent in the lower energy data. Using real data instead of Monte Carlo, as measured at the LHC, the technique has the potential to project the multiplicity distributions for different intervals at very high collision energies, e.g. 27 TeV or 100 TeV for the upgraded HE-LHC and FCC-hh respectively, using only data collected at the LHC, i.e. at center of mass energies from 0.9 up to 13 TeV.

摘要

一种机器学习技术被用于拟合高能质子-质子碰撞中的多重性分布,并应用于对更高能量碰撞进行预测。该方法通过蒙特卡罗事件发生器进行测试。使用PYTHIA事件发生器模拟了质子-质子碰撞中不同伪快度区间内的带电粒子多重性和横向动量分布,用于质心能量[公式:见文本]=0.9、2.36、2.76、5、7、8、13 TeV进行模型训练和验证,以及用于质心能量为10、20、27、50、100和150 TeV时进行模型预测。进行比较以确保模型再现带电粒子多重性和横向动量的输入变量与输出分布之间的关系。多重性和横向动量分布不仅在训练能量值的情况下,而且在未训练能量值的情况下都被很好地描述和预测。该研究提出了一种通过推断低能量数据中固有的信息来预测新能量下多重性分布的方法。使用大型强子对撞机测量的真实数据而非蒙特卡罗数据,该技术有潜力仅使用在大型强子对撞机收集的数据,即质心能量从0.9到13 TeV的数据,来预测不同区间在非常高碰撞能量下的多重性分布,例如分别针对升级后的高能大型强子对撞机和未来环形对撞机-hh的27 TeV或100 TeV。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa19/9120024/084d939e4de8/41598_2022_11618_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验