Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia.
Department of Physics, Saratov State University, 410012 Saratov, Russia.
Sensors (Basel). 2022 Apr 21;22(9):3202. doi: 10.3390/s22093202.
The detection of hydrogen peroxide and the control of its concentration are important tasks in the biological and chemical sciences. In this paper, we developed a simple and quantitative method for the non-enzymatic detection of HO based on the selective etching of Au@Ag nanorods with embedded Raman active molecules. The transfer of electrons between silver atoms and hydrogen peroxide enhances the oxidation reaction, and the Ag shell around the Au nanorod gradually dissolves. This leads to a change in the color of the nanoparticle colloid, a shift in LSPR, and a decrease in the SERS response from molecules embedded between the Au core and Ag shell. In our study, we compared the sensitivity of these readouts for nanoparticles with different Ag shell morphology. We found that triangle core-shell nanoparticles exhibited the highest sensitivity, with a detection limit of 10 M, and the SERS detection range of 1 × 10 to 2 × 10 M. In addition, a colorimetric strategy was applied to fabricate a simple indicator paper sensor for fast detection of hydrogen peroxide in liquids. In this case, the concentration of hydrogen peroxide was qualitatively determined by the change in the color of the nanoparticles deposited on the nitrocellulose membrane.
过氧化氢的检测及其浓度控制是生物和化学科学中的重要任务。在本文中,我们开发了一种基于嵌入拉曼活性分子的金@银纳米棒选择性刻蚀的简单、定量的 HO 非酶检测方法。银原子和过氧化氢之间的电子转移增强了氧化反应,并且围绕金纳米棒的 Ag 壳逐渐溶解。这导致纳米颗粒胶体的颜色变化、LSPR 的偏移以及嵌入 Au 核和 Ag 壳之间的分子的 SERS 响应的降低。在我们的研究中,我们比较了这些读出方法对具有不同 Ag 壳形态的纳米颗粒的灵敏度。我们发现三角核壳纳米颗粒表现出最高的灵敏度,检测限为 10 M,SERS 检测范围为 1×10 到 2×10 M。此外,我们应用比色策略制造了一种简单的指示纸传感器,用于快速检测液体中的过氧化氢。在这种情况下,通过沉积在硝酸纤维素膜上的纳米颗粒的颜色变化定性地确定过氧化氢的浓度。