Suppr超能文献

多水听器融合网络调制识别

Multihydrophone Fusion Network for Modulation Recognition.

机构信息

School of Information Systems Engineering, PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China.

出版信息

Sensors (Basel). 2022 Apr 22;22(9):3214. doi: 10.3390/s22093214.

Abstract

Deep learning (DL)-based modulation recognition methods of underwater acoustic communication signals are mostly applied to a single hydrophone reception scenario. In this paper, we propose a novel end-to-end multihydrophone fusion network (MHFNet) for multisensory reception scenarios. MHFNet consists of a feature extraction module and a fusion module. The feature extraction module extracts the features of the signals received by the multiple hydrophones. Then, through the neural network, the fusion module fuses and classifies the features of the multiple signals. MHFNet takes full advantage of neural networks and multihydrophone reception to effectively fuse signal features for realizing improved modulation recognition performance. Experimental results on simulation and practical data show that MHFNet is superior to other fusion methods. The classification accuracy is improved by about 16%.

摘要

基于深度学习(DL)的水声通信信号调制识别方法大多应用于单个水听器接收场景。本文提出了一种新的用于多传感器接收场景的端到端多水听器融合网络(MHFNet)。MHFNet 由特征提取模块和融合模块组成。特征提取模块提取多个水听器接收信号的特征。然后,通过神经网络,融合模块融合和分类多个信号的特征。MHFNet 充分利用神经网络和多水听器接收,有效地融合信号特征,实现调制识别性能的提高。仿真和实际数据的实验结果表明,MHFNet 优于其他融合方法。分类准确率提高了约 16%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b697/9103318/fd8889d748f1/sensors-22-03214-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验