Suppr超能文献

基于深度迁移学习的变多普勒水下声通信。

Deep transfer learning-based variable Doppler underwater acoustic communications.

机构信息

National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China.

Yichang Testing Technique Research Institute, Yichang City Hubei Province 443003, China.

出版信息

J Acoust Soc Am. 2023 Jul 1;154(1):232-244. doi: 10.1121/10.0020147.

Abstract

This paper proposes a deep transfer learning (DTL)-based variable Doppler frequency-hopping binary frequency-shift keying underwater acoustic communication system. The system uses a convolutional neural network (CNN) as the demodulation module of the receiver. This approach directly demodulates the received signal without estimating the Doppler. The DTL first uses the simulated communication signal data to complete the CNN training. It then copies a part of the convolution layers from the pre-trained CNN to the target CNN. After randomly initializing the remaining layers for the target CNN, it is trained by the data samples from the specific communication scenarios. During the training process, the CNN learns the corresponding frequency from each symbol in the selected frequency-hopping group through the Mel-spectrograms. Simulation and experimental data processing results show that the performance of the proposed system is better than conventional systems, especially when the transmitter and receiver of the communication system are in variable speed motion in shallow water acoustic channels.

摘要

本文提出了一种基于深度迁移学习(DTL)的变多普勒频率捷变二进制频移键控水声通信系统。该系统在接收机中使用卷积神经网络(CNN)作为解调模块。这种方法直接对接收信号进行解调,而无需估计多普勒。DTL 首先使用模拟通信信号数据完成 CNN 训练,然后将预训练 CNN 的一部分卷积层复制到目标 CNN 中。在随机初始化目标 CNN 的其余层后,使用特定通信场景中的数据样本对其进行训练。在训练过程中,CNN 通过梅尔频谱图从所选跳频组中的每个符号学习相应的频率。仿真和实验数据处理结果表明,与传统系统相比,所提出的系统性能更好,特别是在浅海声信道中通信系统的发射机和接收机处于变速运动时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验