使用多种传感器对手臂动作研究测试执行过程中的手部运动进行分析。

Hand Motion Analysis during the Execution of the Action Research Arm Test Using Multiple Sensors.

机构信息

Escola Politècnica Superior d'Enginyeria de Manresa (EPSEM), Polytechnic University of Catalonia, 08242 Manresa, Barcelona, Spain.

Department of Manufacturing Technologies, Polytechnic University of Uruapan Michoacán, Uruapan 60210, Michoacán, Mexico.

出版信息

Sensors (Basel). 2022 Apr 24;22(9):3276. doi: 10.3390/s22093276.

Abstract

The Action Research Arm Test (ARAT) is a standardized outcome measure that can be improved by integrating sensors for hand motion analysis. The purpose of this study is to measure the flexion angle of the finger joints and fingertip forces during the performance of three subscales (Grasp, Grip, and Pinch) of the ARAT, using a data glove (CyberGlove II) and five force-sensing resistors (FSRs) simultaneously. An experimental study was carried out with 25 healthy subjects (right-handed). The results showed that the mean flexion angles of the finger joints required to perform the 16 activities were Thumb (Carpometacarpal Joint (CMC) 28.56°, Metacarpophalangeal Joint (MCP) 26.84°, and Interphalangeal Joint (IP) 13.23°), Index (MCP 46.18°, Index Proximal Interphalangeal Joint (PIP) 38.89°), Middle (MCP 47.5°, PIP 42.62°), Ring (MCP 44.09°, PIP 39.22°), and Little (MCP 31.50°, PIP 22.10°). The averaged fingertip force exerted in the Grasp Subscale was 8.2 N, in Grip subscale 6.61 N and Pinch subscale 3.89 N. These results suggest that the integration of multiple sensors during the performance of the ARAT has clinical relevance, allowing therapists and other health professionals to perform a more sensitive, objective, and quantitative assessment of the hand function.

摘要

动作研究手臂测试(ARAT)是一种标准化的结果测量方法,可以通过集成手部运动分析传感器来进行改进。本研究的目的是使用数据手套(CyberGlove II)和五个力传感器(FSR)同时测量 ARAT 的三个子量表(抓握、握持和捏合)中手指关节的弯曲角度和指尖力。对 25 名健康受试者(右利手)进行了实验研究。结果表明,完成 16 项活动所需的手指关节平均弯曲角度为拇指(掌指关节(CMC)28.56°,近节指间关节(MCP)26.84°,指间关节(IP)13.23°)、食指(MCP 46.18°,近节指间关节(PIP)38.89°)、中指(MCP 47.5°,PIP 42.62°)、环指(MCP 44.09°,PIP 39.22°)和小指(MCP 31.50°,PIP 22.10°)。在抓握子量表中施加的平均指尖力为 8.2N,在握持子量表中为 6.61N,在捏合子量表中为 3.89N。这些结果表明,在执行 ARAT 期间整合多个传感器具有临床相关性,使治疗师和其他健康专业人员能够对手部功能进行更敏感、客观和定量的评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bc8/9105674/72bbad920fee/sensors-22-03276-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索