Suppr超能文献

基于多语义分割网络堆叠集成学习的混凝土损伤检测性能提升策略。

A Performance Improvement Strategy for Concrete Damage Detection Using Stacking Ensemble Learning of Multiple Semantic Segmentation Networks.

机构信息

School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China.

State Key Laboratory of Coastal and Offshore, Engineering School of Civil Engineering, Dalian University of Technology, Dalian 116024, China.

出版信息

Sensors (Basel). 2022 Apr 27;22(9):3341. doi: 10.3390/s22093341.

Abstract

Semantic segmentation network-based methods can detect concrete damage at the pixel level. However, the performance of a single semantic segmentation network is often limited. To improve the concrete damage detection performance of a semantic segmentation network, a stacking ensemble learning-based concrete crack detection method using multiple semantic segmentation networks is proposed. To realize this method, a database including 500 images and their labels with concrete crack and spalling is built and divided into training and testing sets. At first, the training and prediction of five semantic segmentation networks (FCN-8s, SegNet, U-Net, PSPNet and DeepLabv3+) are respectively implemented on the built training set according to a five-fold cross-validation principle, where 80% of the training images are used in the training process, and 20% training images are reserved. Then, in predicting the results of reserved training images from trained semantic segmentation networks, the class labels of all pixels are collected, and then four softmax regression-based ensemble learning models are trained using the collected class labels and their true classification labels. The trained ensemble learning models are applied to regressed testing results of semantic segmentation network models. Compared with the best single semantic segmentation network, the best ensemble learning model provides performance improvement of 0.21% PA, 0.54% MPA, 3.66% MIoU, and 0.12% FWIoU, respectively. The study results show that the stacking ensemble learning strategy can indeed improve concrete damage detection performance through ensemble learning of multiple semantic segmentation networks.

摘要

基于语义分割网络的方法可以在像素级别检测具体的损伤。然而,单个语义分割网络的性能往往有限。为了提高语义分割网络的混凝土损伤检测性能,提出了一种基于堆叠集成学习的多语义分割网络的混凝土裂缝检测方法。为了实现该方法,构建了一个包含 500 张带有混凝土裂缝和剥落的图像及其标签的数据库,并将其分为训练集和测试集。首先,根据五重交叉验证原理,在构建的训练集上分别对五个语义分割网络(FCN-8s、SegNet、U-Net、PSPNet 和 DeepLabv3+)进行训练和预测,其中 80%的训练图像用于训练过程,20%的训练图像保留。然后,在对从训练好的语义分割网络预测的保留训练图像的结果中,收集所有像素的类别标签,然后使用收集到的类别标签及其真实分类标签训练四个基于 softmax 回归的集成学习模型。将训练好的集成学习模型应用于语义分割网络模型的回归测试结果。与最佳的单个语义分割网络相比,最佳的集成学习模型在 PA、MPA、MIoU 和 FWIoU 方面分别提供了 0.21%、0.54%、3.66%和 0.12%的性能提升。研究结果表明,堆叠集成学习策略确实可以通过多个语义分割网络的集成学习来提高混凝土损伤检测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d04c/9105047/429eacbaf835/sensors-22-03341-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验