Suppr超能文献

估算物联网交通流量传感器产生的一氧化碳排放及排放重建

Estimating CO Emissions from IoT Traffic Flow Sensors and Reconstruction.

作者信息

Bilotta Stefano, Nesi Paolo

机构信息

DISIT Lab, Department of Information Engineering, University of Florence, 50139 Firenze, Italy.

出版信息

Sensors (Basel). 2022 Apr 28;22(9):3382. doi: 10.3390/s22093382.

Abstract

CO emissions from burning fossil fuels make a relevant contribution to atmospheric changes and climate disruptions. In cities, the contribution by traffic of CO is very relevant, and the general CO estimation can be computed (i) on the basis of the fuel transformation in energy using several factors and efficiency aspects of engines and (ii) by taking into account the weight moved, distance, time, and emissions factor of each specific vehicle. Those approaches are unsuitable for understanding the impact of vehicles on CO in cities since vehicles produce CO depending on their specific efficiency, producer, fuel, weight, driver style, road conditions, seasons, etc. Thanks to today's technologies, it is possible to collect real-time traffic data to obtain useful information that can be used to monitor changes in carbon emissions. The research presented in this paper studied the cause of CO emissions in the air with respect to different traffic conditions. In particular, we propose a model and approach to assess CO emissions on the basis of traffic flow data taking into account uncongested and congested conditions. These traffic situations contribute differently to the amount of CO in the atmosphere, providing a different emissions factor. The solution was validated in urban conditions of Florence city, where the amount of CO is measured by sensors at a few points where more than 100 traffic flow sensors are present (data accessible on the Snap4City platform). The solution allowed for the estimation of CO from traffic flow, estimating the changes in the emissions factor on the basis of the seasons and in terms of precision. The identified model and solution allowed the city's distribution of CO to be computed.

摘要

燃烧化石燃料产生的一氧化碳排放对大气变化和气候破坏有显著影响。在城市中,交通产生的一氧化碳贡献很大,一般一氧化碳排放量的估算可以通过以下两种方式进行:(i)基于能源中的燃料转化,考虑发动机的几个因素和效率方面;(ii)考虑每辆特定车辆的载重、行驶距离、时间和排放因子。然而,这些方法并不适合理解车辆对城市一氧化碳排放的影响,因为车辆产生一氧化碳的量取决于其特定效率、制造商、燃料、重量、驾驶员驾驶风格、道路状况、季节等因素。得益于当今的技术,可以收集实时交通数据以获取有用信息,用于监测碳排放的变化。本文所呈现的研究探讨了不同交通状况下空气中一氧化碳排放的成因。具体而言,我们提出了一种基于交通流数据评估一氧化碳排放的模型和方法,同时考虑了畅通和拥堵状况。这些交通状况对大气中一氧化碳的含量贡献不同,具有不同的排放因子。该解决方案在佛罗伦萨市的城市环境中得到了验证,该市在有100多个交通流传感器的几个点通过传感器测量一氧化碳含量(数据可在Snap4City平台获取)。该解决方案能够根据交通流估算一氧化碳排放量,根据季节估算排放因子的变化并评估其精度。所确定的模型和解决方案能够计算出城市一氧化碳的分布情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10aa/9105774/2e09155f6695/sensors-22-03382-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验