Suppr超能文献

便携式深度学习驱动的离子敏感场效应晶体管方案用于检测克百威农药。

Portable Deep Learning-Driven Ion-Sensitive Field-Effect Transistor Scheme for Measurement of Carbaryl Pesticide.

机构信息

College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.

School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.

出版信息

Sensors (Basel). 2022 May 6;22(9):3543. doi: 10.3390/s22093543.

Abstract

This research proposes a multiple-input deep learning-driven ion-sensitive field-effect transistor (ISFET) scheme to predict the concentrations of carbaryl pesticide. In the study, the carbaryl concentrations are varied between 1 × 10-1 × 10 M, and the temperatures of solutions between 20-35 °C. To validate the multiple-input deep learning regression model, the proposed ISFET scheme is deployed onsite (a field test) to measure pesticide concentrations in the carbaryl-spiked vegetable extract. The advantage of this research lies in the use of a deep learning algorithm with an ISFET sensor to effectively predict the pesticide concentrations, in addition to improving the prediction accuracy. The results demonstrate the very high predictive ability of the proposed ISFET scheme, given an MSE, MAE, and R of 0.007%, 0.016%, and 0.992, respectively. The proposed multiple-input deep learning regression model with signal compensation is applicable to a wide range of solution temperatures which is convenient for onsite measurement. Essentially, the proposed multiple-input deep learning regression model could be adopted as an effective alternative to the conventional statistics-based regression to predict pesticide concentrations.

摘要

本研究提出了一种基于多输入深度学习的离子敏感场效应晶体管(ISFET)方案,用于预测carbaryl 农药的浓度。在研究中,carbaryl 浓度在 1×10-1×10 M 之间变化,溶液温度在 20-35°C 之间。为了验证多输入深度学习回归模型,该研究部署了基于 ISFET 的现场测试,以测量蔬菜提取物中添加的 carbaryl 农药的浓度。本研究的优势在于使用深度学习算法与 ISFET 传感器相结合,不仅提高了预测精度,还能有效预测农药浓度。研究结果表明,所提出的 ISFET 方案具有很高的预测能力,MSE、MAE 和 R 分别为 0.007%、0.016%和 0.992。该研究提出的具有信号补偿的多输入深度学习回归模型适用于广泛的溶液温度范围,便于现场测量。实质上,所提出的多输入深度学习回归模型可以作为一种有效的替代传统基于统计学的回归方法,用于预测农药浓度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5627/9101106/9df44fcfcaa3/sensors-22-03543-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验