Toma Milan, Singh-Gryzbon Shelly, Frankini Elisabeth, Wei Zhenglun Alan, Yoganathan Ajit P
Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, NY 11568, USA.
Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Materials (Basel). 2022 May 5;15(9):3302. doi: 10.3390/ma15093302.
This paper provides a review of engineering applications and computational methods used to analyze the dynamics of heart valve closures in healthy and diseased states. Computational methods are a cost-effective tool that can be used to evaluate the flow parameters of heart valves. Valve repair and replacement have long-term stability and biocompatibility issues, highlighting the need for a more robust method for resolving valvular disease. For example, while fluid-structure interaction analyses are still scarcely utilized to study aortic valves, computational fluid dynamics is used to assess the effect of different aortic valve morphologies on velocity profiles, flow patterns, helicity, wall shear stress, and oscillatory shear index in the thoracic aorta. It has been analyzed that computational flow dynamic analyses can be integrated with other methods to create a superior, more compatible method of understanding risk and compatibility.
本文综述了用于分析健康和患病状态下心脏瓣膜关闭动力学的工程应用和计算方法。计算方法是一种经济高效的工具,可用于评估心脏瓣膜的流动参数。瓣膜修复和置换存在长期稳定性和生物相容性问题,这凸显了需要一种更强大的方法来解决瓣膜疾病。例如,虽然流体-结构相互作用分析在研究主动脉瓣方面仍很少被使用,但计算流体动力学被用于评估不同主动脉瓣形态对胸主动脉中速度分布、流动模式、螺旋度、壁面剪应力和振荡剪应力指数的影响。据分析,计算流体动力学分析可与其他方法相结合,以创建一种更优越、更兼容的方法来理解风险和兼容性。