Syed Faiz, Khan Sahar, Toma Milan
College of Osteopathic Medicine, New York Institute of Technology, Northern Boulevard, Old Westbury, NY 11568, USA.
Biology (Basel). 2023 Jul 21;12(7):1026. doi: 10.3390/biology12071026.
Using fluid-structure interaction algorithms to simulate the human circulatory system is an innovative approach that can provide valuable insights into cardiovascular dynamics. Fluid-structure interaction algorithms enable us to couple simulations of blood flow and mechanical responses of the blood vessels while taking into account interactions between fluid dynamics and structural behaviors of vessel walls, heart walls, or valves. In the context of the human circulatory system, these algorithms offer a more comprehensive representation by considering the complex interplay between blood flow and the elasticity of blood vessels. Algorithms that simulate fluid flow dynamics and the resulting forces exerted on vessel walls can capture phenomena such as wall deformation, arterial compliance, and the propagation of pressure waves throughout the cardiovascular system. These models enhance the understanding of vasculature properties in human anatomy. The utilization of fluid-structure interaction methods in combination with medical imaging can generate patient-specific models for individual patients to facilitate the process of devising treatment plans. This review evaluates current applications and implications of fluid-structure interaction algorithms with respect to the vasculature, while considering their potential role as a guidance tool for intervention procedures.
使用流固相互作用算法来模拟人体循环系统是一种创新方法,能够为心血管动力学提供有价值的见解。流固相互作用算法使我们能够在考虑流体动力学与血管壁、心脏壁或瓣膜的结构行为之间相互作用的同时,将血流模拟与血管的力学响应相结合。在人体循环系统的背景下,这些算法通过考虑血流与血管弹性之间的复杂相互作用,提供了更全面的表征。模拟流体流动动力学以及由此产生的作用于血管壁的力的算法,可以捕捉诸如壁变形、动脉顺应性以及压力波在整个心血管系统中的传播等现象。这些模型增强了对人体解剖学中血管系统特性的理解。将流固相互作用方法与医学成像相结合的应用,可以为个体患者生成特定患者模型,以促进制定治疗计划的过程。本综述评估了流固相互作用算法在血管系统方面的当前应用和影响,同时考虑了它们作为干预程序指导工具的潜在作用。