Suppr超能文献

i5hmCVec:利用序列特征嵌入识别RNA的5-羟甲基胞嘧啶位点

i5hmCVec: Identifying 5-Hydroxymethylcytosine Sites of RNA Using Sequence Feature Embeddings.

作者信息

Liu Hang-Yu, Du Pu-Feng

机构信息

College of Intelligence and Computing, Tianjin University, Tianjin, China.

出版信息

Front Genet. 2022 May 3;13:896925. doi: 10.3389/fgene.2022.896925. eCollection 2022.

Abstract

5-Hydroxymethylcytosine (5hmC), one of the most important RNA modifications, plays an important role in many biological processes. Accurately identifying RNA modification sites helps understand the function of RNA modification. In this work, we propose a computational method for identifying 5hmC-modified regions using machine learning algorithms. We applied a sequence feature embedding method based on the dna2vec algorithm to represent the RNA sequence. The results showed that the performance of our model is better that of than state-of-art methods. All dataset and source codes used in this study are available at: https://github.com/liu-h-y/5hmC_model.

摘要

5-羟甲基胞嘧啶(5hmC)是最重要的RNA修饰之一,在许多生物过程中发挥着重要作用。准确识别RNA修饰位点有助于理解RNA修饰的功能。在这项工作中,我们提出了一种使用机器学习算法识别5hmC修饰区域的计算方法。我们应用了基于dna2vec算法的序列特征嵌入方法来表示RNA序列。结果表明,我们模型的性能优于现有方法。本研究中使用的所有数据集和源代码可在以下网址获取:https://github.com/liu-h-y/5hmC_model

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01be/9110757/05e4fa41fb3b/fgene-13-896925-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验