Suppr超能文献

基于序列的深度学习神经网络模型和混合特征用于 5-羟甲基胞嘧啶修饰的识别。

Sequence based model using deep neural network and hybrid features for identification of 5-hydroxymethylcytosine modification.

机构信息

Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, Pakistan.

Department of Information Technology, The University of Haripur, Haripur, Pakistan.

出版信息

Sci Rep. 2024 Apr 20;14(1):9116. doi: 10.1038/s41598-024-59777-y.

Abstract

RNA modifications are pivotal in the development of newly synthesized structures, showcasing a vast array of alterations across various RNA classes. Among these, 5-hydroxymethylcytosine (5HMC) stands out, playing a crucial role in gene regulation and epigenetic changes, yet its detection through conventional methods proves cumbersome and costly. To address this, we propose Deep5HMC, a robust learning model leveraging machine learning algorithms and discriminative feature extraction techniques for accurate 5HMC sample identification. Our approach integrates seven feature extraction methods and various machine learning algorithms, including Random Forest, Naive Bayes, Decision Tree, and Support Vector Machine. Through K-fold cross-validation, our model achieved a notable 84.07% accuracy rate, surpassing previous models by 7.59%, signifying its potential in early cancer and cardiovascular disease diagnosis. This study underscores the promise of Deep5HMC in offering insights for improved medical assessment and treatment protocols, marking a significant advancement in RNA modification analysis.

摘要

RNA 修饰在新合成结构的发展中起着关键作用,展示了各种 RNA 类别中广泛的改变。在这些修饰中,5-羟甲基胞嘧啶 (5HMC) 尤为突出,它在基因调控和表观遗传变化中起着关键作用,但通过传统方法检测 5HMC 既繁琐又昂贵。为了解决这个问题,我们提出了 Deep5HMC,这是一个强大的学习模型,利用机器学习算法和判别特征提取技术来准确识别 5HMC 样本。我们的方法集成了七种特征提取方法和各种机器学习算法,包括随机森林、朴素贝叶斯、决策树和支持向量机。通过 K 折交叉验证,我们的模型实现了高达 84.07%的准确率,比以前的模型高出 7.59%,这表明它在早期癌症和心血管疾病诊断方面具有潜力。这项研究强调了 Deep5HMC 在提供改进的医学评估和治疗方案见解方面的潜力,标志着 RNA 修饰分析的重大进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57a2/11551160/21d6edc7bc98/41598_2024_59777_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验