Suppr超能文献

敲低 HDAC9 部分通过抑制 MAPK 信号通路抑制人骨髓间充质干细胞的成骨分化。

Knockdown of HDAC9 Inhibits Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells Partially by Suppressing the MAPK Signaling Pathway.

机构信息

Department of Rehabilitation, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.

Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.

出版信息

Clin Interv Aging. 2022 May 12;17:777-787. doi: 10.2147/CIA.S361008. eCollection 2022.

Abstract

BACKGROUND

Histone deacetylase 9 (HDAC9) is a member of the HDAC gene family that plays essential roles in the organization of transcriptional regulation by catalyzing deacetylation of histone proteins. However, the effects of HDAC9 on osteonecrosis of femoral head (ONFH) have not been investigated. The present study aimed to reveal whether histone deacetylase 9 (HDAC9) regulated osteogenic differentiation.

METHODS

A lentiviral knockdown HDAC9 model was established in hBMSCs. Osteoblast-specific gene expression, such as Runx2, OCN was examined by qRT-PCR and Western blot, respectively. Though transcriptome sequencing and enrichment analysis, related signal pathways caused by down-regulation of HDAC9 were screened. The effect of HDAC9 on MAPK signaling pathway was determined by Western blot. Eventually, tert-Butylhydroquinone (tBHQ) was used to examine the effect of MAPK activation on osteogenesis in HDAC9 knockdown hBMSCs.

RESULTS

A lentiviral knockdown HDAC9 model was successfully established in hBMSCs. HDAC9 knockdown significantly inhibited osteoblast-specific gene expression, such as runt-related transcription factor 2 (Runx2), osteocalcin (OCN) and mineral deposition in vitro. Moreover, a total of 950 DEGs were identified in HDAC9-knockdown hBMSCs. We discovered that the MAPK signaling pathway might be related to this process by pathway enrichment analysis. HDAC9 knockdown significantly reduced the expression level of phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2). Finally, the decreased osteogenesis due to HDAC9 knockdown was partly rescued by a MAPK signaling pathway activator.

CONCLUSION

Taken together, these results suggest that HDAC9 knockdown inhibits osteogenic differentiation of hBMSCs, partially through the MAPK signaling pathway. HDAC9 may serve as a potential target for the treatment of ONFH.

摘要

背景

组蛋白去乙酰化酶 9(HDAC9)是组蛋白去乙酰化酶基因家族的成员,通过催化组蛋白蛋白的去乙酰化,在转录调控的组织中发挥重要作用。然而,HDAC9 对股骨头坏死(ONFH)的影响尚未得到研究。本研究旨在揭示组蛋白去乙酰化酶 9(HDAC9)是否调节成骨分化。

方法

在 hBMSCs 中建立了慢病毒敲低 HDAC9 模型。通过 qRT-PCR 和 Western blot 分别检测成骨特异性基因表达,如 runt 相关转录因子 2(Runx2)、骨钙素(OCN)。通过转录组测序和富集分析,筛选出因 HDAC9 下调而引起的相关信号通路。通过 Western blot 确定 HDAC9 对 MAPK 信号通路的影响。最后,使用叔丁基对苯二酚(tBHQ)检测 MAPK 激活对 HDAC9 敲低 hBMSCs 成骨的影响。

结果

成功在 hBMSCs 中建立了慢病毒敲低 HDAC9 模型。HDAC9 敲低显著抑制体外成骨特异性基因表达,如 runt 相关转录因子 2(Runx2)、骨钙素(OCN)和矿物质沉积。此外,通过通路富集分析,我们发现 MAPK 信号通路可能与这一过程有关。HDAC9 敲低显著降低了磷酸化细胞外信号调节激酶 1/2(pERK1/2)的表达水平。最后,MAPK 信号通路激活剂部分挽救了因 HDAC9 敲低导致的成骨减少。

结论

综上所述,这些结果表明 HDAC9 敲低抑制 hBMSCs 的成骨分化,部分通过 MAPK 信号通路。HDAC9 可能成为治疗 ONFH 的潜在靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a659/9113040/095f723503aa/CIA-17-777-g0001.jpg

相似文献

5
MiRNA-19a-3p alleviates the progression of osteoporosis by targeting HDAC4 to promote the osteogenic differentiation of hMSCs.
Biochem Biophys Res Commun. 2019 Aug 27;516(3):666-672. doi: 10.1016/j.bbrc.2019.06.083. Epub 2019 Jun 24.
8
MicroRNA-383-5p regulates osteogenic differentiation of human periodontal ligament stem cells by targeting histone deacetylase 9.
Arch Oral Biol. 2021 Sep;129:105166. doi: 10.1016/j.archoralbio.2021.105166. Epub 2021 May 25.
10
TIMP-1 inhibits proliferation and osteogenic differentiation of hBMSCs through Wnt/β-catenin signaling.
Biosci Rep. 2019 Jan 8;39(1). doi: 10.1042/BSR20181290. Print 2019 Jan 31.

引用本文的文献

1
Posttranslational Modification in Bone Homeostasis and Osteoporosis.
MedComm (2020). 2025 Apr 1;6(4):e70159. doi: 10.1002/mco2.70159. eCollection 2025 Apr.
2
[Ferroptosis-related genes in osteoporosis: a bioinformatics analysis and study].
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2024 Dec 25;53(6):680-690. doi: 10.3724/zdxbyxb-2024-0089.
3
Advances in the Pathogenesis of Steroid-Associated Osteonecrosis of the Femoral Head.
Biomolecules. 2024 Jun 6;14(6):667. doi: 10.3390/biom14060667.
6
Unveiling the Mechanisms of Bone Marrow Toxicity Induced by Lead Acetate Exposure.
Biol Trace Elem Res. 2024 Mar;202(3):1041-1066. doi: 10.1007/s12011-023-03733-w. Epub 2023 Jun 28.
7
Epigenetic control of mesenchymal stem cells orchestrates bone regeneration.
Front Endocrinol (Lausanne). 2023 Mar 6;14:1126787. doi: 10.3389/fendo.2023.1126787. eCollection 2023.

本文引用的文献

1
Clinical significance of HDAC9 in hepatocellular carcinoma.
Cell Mol Biol (Noisy-le-grand). 2019 Apr 30;65(4):23-28.
2
Pax2 is essential for proliferation and osteogenic differentiation of mouse mesenchymal stem cells via Runx2.
Exp Cell Res. 2018 Oct 15;371(2):342-352. doi: 10.1016/j.yexcr.2018.08.026. Epub 2018 Aug 23.
3
Wnt11 promotes BMP9-induced osteogenic differentiation through BMPs/Smads and p38 MAPK in mesenchymal stem cells.
J Cell Biochem. 2018 Nov;119(11):9462-9473. doi: 10.1002/jcb.27262. Epub 2018 Jul 16.
4
HDAC9 overexpression confers invasive and angiogenic potential to triple negative breast cancer cells via modulating microRNA-206.
Biochem Biophys Res Commun. 2018 Sep 5;503(2):1087-1091. doi: 10.1016/j.bbrc.2018.06.120. Epub 2018 Jun 23.
8
An evidence-based guide to the treatment of osteonecrosis of the femoral head.
Bone Joint J. 2017 Oct;99-B(10):1267-1279. doi: 10.1302/0301-620X.99B10.BJJ-2017-0233.R2.
9
The Pathophysiological Sequence of Glucocorticoid-Induced Osteonecrosis of the Femoral Head in Male Mice.
Endocrinology. 2017 Nov 1;158(11):3817-3831. doi: 10.1210/en.2017-00662.
10
Sirtuin-3 Promotes Adipogenesis, Osteoclastogenesis, and Bone Loss in Aging Male Mice.
Endocrinology. 2017 Sep 1;158(9):2741-2753. doi: 10.1210/en.2016-1739.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验