Suppr超能文献

输入层正则化在磁共振弛豫双指数参数估计中的应用。

Input layer regularization for magnetic resonance relaxometry biexponential parameter estimation.

机构信息

Applied Mathematics and Statistics, and Scientific Computation, University of Maryland, College Park, Maryland, USA.

Department of Mathematics, University of Maryland, College Park, Maryland, USA.

出版信息

Magn Reson Chem. 2022 Nov;60(11):1076-1086. doi: 10.1002/mrc.5289. Epub 2022 Jun 20.

Abstract

Many methods have been developed for estimating the parameters of biexponential decay signals, which arise throughout magnetic resonance relaxometry (MRR) and the physical sciences. This is an intrinsically ill-posed problem so that estimates can depend strongly on noise and underlying parameter values. Regularization has proven to be a remarkably efficient procedure for providing more reliable solutions to ill-posed problems, while, more recently, neural networks have been used for parameter estimation. We re-address the problem of parameter estimation in biexponential models by introducing a novel form of neural network regularization which we call input layer regularization (ILR). Here, inputs to the neural network are composed of a biexponential decay signal augmented by signals constructed from parameters obtained from a regularized nonlinear least-squares estimate of the two decay time constants. We find that ILR results in a reduction in the error of time constant estimates on the order of 15%-50% or more, depending on the metric used and signal-to-noise level, with greater improvement seen for the time constant of the more rapidly decaying component. ILR is compatible with existing regularization techniques and should be applicable to a wide range of parameter estimation problems.

摘要

许多方法已经被开发出来用于估计双指数衰减信号的参数,这些参数在磁共振弛豫测量(MRR)和物理科学中都有出现。这是一个本质上不适定的问题,因此估计值可能会强烈依赖于噪声和潜在的参数值。正则化已被证明是为不适定问题提供更可靠解决方案的一种非常有效的方法,而最近,神经网络已被用于参数估计。我们通过引入一种新的神经网络正则化形式,即输入层正则化(ILR),重新解决双指数模型中的参数估计问题。在这里,神经网络的输入由一个双指数衰减信号组成,该信号由从两个衰减时间常数的正则化非线性最小二乘估计中获得的参数构建的信号增强。我们发现,ILR 导致时间常数估计误差降低了 15%至 50%或更多,具体取决于使用的度量和信噪比,对于衰减更快的分量的时间常数,改进更为明显。ILR 与现有的正则化技术兼容,应该适用于广泛的参数估计问题。

相似文献

本文引用的文献

3
Text Data Augmentation for Deep Learning.用于深度学习的文本数据增强
J Big Data. 2021;8(1):101. doi: 10.1186/s40537-021-00492-0. Epub 2021 Jul 19.
5
T analysis using artificial neural networks.T 分析采用人工神经网络。
J Magn Reson. 2021 Apr;325:106930. doi: 10.1016/j.jmr.2021.106930. Epub 2021 Feb 9.
7
A Tutorial Introduction to Inverse Problems in Magnetic Resonance.磁共振逆问题教程简介。
NMR Biomed. 2020 Dec;33(12):e4315. doi: 10.1002/nbm.4315. Epub 2020 Aug 16.
8
Myelin water imaging data analysis in less than one minute.少于一分钟的髓鞘水成像数据分析。
Neuroimage. 2020 Apr 15;210:116551. doi: 10.1016/j.neuroimage.2020.116551. Epub 2020 Jan 21.
9
Fast fit-free analysis of fluorescence lifetime imaging via deep learning.基于深度学习的快速无拟合荧光寿命成像分析。
Proc Natl Acad Sci U S A. 2019 Nov 26;116(48):24019-24030. doi: 10.1073/pnas.1912707116. Epub 2019 Nov 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验