Department of Statistical Science, Southern Methodist University, Dallas, Texas, USA.
Department of Statistics, Seoul National University, Seoul, Republic of Korea.
Pharm Stat. 2022 Nov;21(6):1219-1245. doi: 10.1002/pst.2230. Epub 2022 May 20.
The area under a receiver operating characteristic curve (AUC) is a useful tool to assess the performance of continuous-scale diagnostic tests on binary classification. In this article, we propose an empirical likelihood (EL) method to construct confidence intervals for the AUC from data collected by ranked set sampling (RSS). The proposed EL-based method enables inferences without assumptions required in existing nonparametric methods and takes advantage of the sampling efficiency of RSS. We show that for both balanced and unbalanced RSS, the EL-based point estimate is the Mann-Whitney statistic, and confidence intervals can be obtained from a scaled chi-square distribution. Simulation studies and two case studies on diabetes and chronic kidney disease data suggest that using the proposed method and RSS enables more efficient inference on the AUC.
受试者工作特征曲线下面积(AUC)是评估二分类连续尺度诊断试验性能的有用工具。本文提出了一种基于经验似然(EL)的方法,用于通过有序集抽样(RSS)收集的数据构建 AUC 的置信区间。所提出的基于 EL 的方法不需要现有非参数方法所需的假设即可进行推断,并利用 RSS 的抽样效率。我们表明,对于平衡和不平衡的 RSS,基于 EL 的点估计是曼-惠特尼统计量,并且置信区间可以从缩放的卡方分布中获得。糖尿病和慢性肾病数据的模拟研究和两个案例研究表明,使用提出的方法和 RSS 可以更有效地对 AUC 进行推断。