Suppr超能文献

迈向自然图像的自上而下的恰可察觉差异估计

Toward Top-Down Just Noticeable Difference Estimation of Natural Images.

作者信息

Jiang Qiuping, Liu Zhentao, Wang Shiqi, Shao Feng, Lin Weisi

出版信息

IEEE Trans Image Process. 2022;31:3697-3712. doi: 10.1109/TIP.2022.3174398. Epub 2022 May 26.

Abstract

Just noticeable difference (JND) of natural images refers to the maximum pixel intensity change magnitude that typical human visual system (HVS) cannot perceive. Existing efforts on JND estimation mainly dedicate to modeling the diverse masking effects in either/both spatial or/and frequency domains, and then fusing them into an overall JND estimate. In this work, we turn to a dramatically different way to address this problem with a top-down design philosophy. Instead of explicitly formulating and fusing different masking effects in a bottom-up way, the proposed JND estimation model dedicates to first predicting a critical perceptual lossless (CPL) counterpart of the original image and then calculating the difference map between the original image and the predicted CPL image as the JND map. We conduct subjective experiments to determine the critical points of 500 images and find that the distribution of cumulative normalized KLT coefficient energy values over all 500 images at these critical points can be well characterized by a Weibull distribution. Given a testing image, its corresponding critical point is determined by a simple weighted average scheme where the weights are determined by a fitted Weibull distribution function. The performance of the proposed JND model is evaluated explicitly with direct JND prediction and implicitly with two applications including JND-guided noise injection and JND-guided image compression. Experimental results have demonstrated that our proposed JND model can achieve better performance than several latest JND models. In addition, we also compare the proposed JND model with existing visual difference predicator (VDP) metrics in terms of the capability in distortion detection and discrimination. The results indicate that our JND model also has a good performance in this task. The code of this work are available at https://github.com/Zhentao-Liu/KLT-JND.

摘要

自然图像的恰可察觉差异(JND)是指典型人类视觉系统(HVS)无法感知的最大像素强度变化幅度。现有的JND估计方法主要致力于在空间域或频率域(或两者)中对各种掩蔽效应进行建模,然后将它们融合到一个整体的JND估计中。在这项工作中,我们采用一种截然不同的方法,以自上而下的设计理念来解决这个问题。所提出的JND估计模型不是以自下而上的方式明确地制定和融合不同的掩蔽效应,而是首先致力于预测原始图像的关键感知无损(CPL)对应物,然后计算原始图像与预测的CPL图像之间的差异图作为JND图。我们进行了主观实验来确定500幅图像的临界点,并发现这些临界点处所有500幅图像上累积归一化KLT系数能量值的分布可以用威布尔分布很好地描述。对于给定的测试图像,其相应的临界点由一个简单的加权平均方案确定,其中权重由拟合的威布尔分布函数确定。所提出的JND模型的性能通过直接JND预测进行明确评估,并通过包括JND引导的噪声注入和JND引导的图像压缩在内的两个应用进行隐含评估。实验结果表明,我们提出的JND模型比几个最新的JND模型具有更好的性能。此外,我们还在失真检测和辨别能力方面将所提出的JND模型与现有的视觉差异预测器(VDP)指标进行了比较。结果表明,我们的JND模型在这项任务中也具有良好的性能。这项工作的代码可在https://github.com/Zhentao-Liu/KLT-JND上获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验