Chen Menghuan, Lv Ximeng, Guan Anxiang, Peng Chen, Qian Linping, Zheng Gengfeng
Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis & Innovative Materials, Fudan University, Shanghai 200438, China.
Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis & Innovative Materials, Fudan University, Shanghai 200438, China.
J Colloid Interface Sci. 2022 Oct;623:348-353. doi: 10.1016/j.jcis.2022.05.060. Epub 2022 May 13.
The electrochemical methane oxidation reaction is a potential approach for upgrading the nature-abundant methane (CH) into value-added chemicals, while the activity and selectivity have remained substantially low due to the extremely inert chemical property of CH. Inspired by the methane mono-oxygenase in nature, we demonstrated Mg-substituted metal-organic frameworks (Mg-MOF-74) containing a uniform distribution of Mg-oxo-Mg nodes as efficient catalytic sites. Compared to MgNi-MOF-74 and Mg(OH) without the Mg-oxo-Mg nodes, the Mg-MOF-74 presented a much enhanced CH electrooxidation performance, with a unique selectivity of producing formate. The maximum Faradaic efficiency of all liquid products reached 10.9% at 1.60 V versus reversible hydrogen electrode (RHE), corresponding to the peak production rate of 126.6 μmol·h·g.
电化学甲烷氧化反应是一种将自然界中储量丰富的甲烷(CH)转化为高附加值化学品的潜在方法,然而由于CH极其惰性的化学性质,其活性和选择性仍然很低。受自然界中甲烷单加氧酶的启发,我们展示了含有均匀分布的Mg-氧代-Mg节点作为有效催化位点的镁取代金属有机框架(Mg-MOF-74)。与不含Mg-氧代-Mg节点的MgNi-MOF-74和Mg(OH)相比,Mg-MOF-74呈现出大大增强的CH电氧化性能,具有独特的生成甲酸盐的选择性。在相对于可逆氢电极(RHE)为1.60 V时,所有液体产物的最大法拉第效率达到10.9%,对应于126.6 μmol·h·g的峰值产率。