School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China; College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
School of Material Science and Engineering, Beihua University, Jilin 132013, PR China.
J Hazard Mater. 2022 Aug 15;436:129141. doi: 10.1016/j.jhazmat.2022.129141. Epub 2022 May 13.
Photo-Fenton degradation of pollutants in wastewater involving hydrogen peroxide (HO) and Fe ions to produce hydroxyl radicals (·OH) with high oxidative activity is an ideal and feasible choice in advanced oxidation processes (AOPs). However, the photo-Fenton degradation application is limited by the range of acidic pH and the external introduction of HO and Fe ions. Herein, a self-sufficient photo-Fenton system was developed by coupled ultrathin porous g-CN (UPCN) nanosheets that spontaneously produce HO with amorphous FeOOH quantum dots (QDs) via in-situ deposition method for efficient photo-Fenton degradation of oxytetracycline (OTC) under natural pH condition. The enhancement of photocatalytic degradation activity comes from the synergistic effect of amorphous FeOOH QDs and UPCN nanosheets as follows: on the one hand, the formation of photo-Fenton system combining in-situ generation HO of UPCN with amorphous FeOOH QDs can better boost photocatalytic activity for degrading OTC solution in natural pH under light illumination; on the other hand, the ultrathin porous structure of UPCN can better promote the rapid transfer and dispersion of photo-generated electrons from UPCN to amorphous FeOOH QDs and then Fe is reduced to Fe to participate in the Fenton catalytic reaction.
光芬顿降解法是一种高级氧化工艺(AOPs),它利用双氧水(HO)和 Fe 离子在污染物废水处理中产生具有高氧化活性的羟基自由基(·OH)。然而,该方法的光芬顿降解应用受到酸性 pH 值范围和 HO 及 Fe 离子外部引入的限制。在此,我们通过耦合超薄多孔 g-CN(UPCN)纳米片,自发生成 HO 和非晶态 FeOOH 量子点(QDs),开发了一种自足的光芬顿系统,用于在自然 pH 条件下高效光芬顿降解土霉素(OTC)。光催化降解活性的增强来自非晶态 FeOOH QDs 和 UPCN 纳米片的协同效应,具体如下:一方面,UPCN 原位生成 HO 的光芬顿系统与非晶态 FeOOH QDs 的结合,可以更好地促进自然光照射下自然 pH 条件下 OTC 溶液的光催化降解活性;另一方面,UPCN 的超薄多孔结构可以更好地促进光生电子从 UPCN 快速转移和分散到非晶态 FeOOH QDs 上,然后 Fe 被还原为 Fe 以参与芬顿催化反应。
Environ Sci Ecotechnol. 2024-8-2