West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan Province, The People's Republic of China.
West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan Province, The People's Republic of China.
Biomed Eng Online. 2022 May 20;21(1):31. doi: 10.1186/s12938-022-01000-y.
The objective is to clarify the effect of alveolar cleft bone graft on maxillofacial biomechanical stabilities, the key areas when bone grafting and in which should be supplemented with bone graft once bone resorption occurred in UCCLP (unilateral complete cleft lip and palate).
Maxillofacial CAD (computer aided design) models of non-bone graft and full maxilla cleft, full alveolar cleft bone graft, bone graft in other sites of the alveolar cleft were acquired by processing the UCCLP maxillofacial CT data in three-dimensional modeling software. The maxillofacial bone EQV (equivalent) stresses and bone suture EQV strains under occlusal states were obtained in the finite element analysis software.
Under corresponding occlusal states, the EQV stresses of maxilla, pterygoid process of sphenoid bone on the corresponding side and anterior alveolar arch on the non-cleft side were higher than other maxillofacial bones, the EQV strains of nasomaxillary, zygomaticomaxillary and pterygomaxillary suture on the corresponding side were higher than other maxillofacial bone sutures. The mean EQV strains of nasal raphe, the maximum EQV stresses of posterior alveolar arch on the non-cleft side, the mean and maximum EQV strains of nasomaxillary suture on the non-cleft side in full alveolar cleft bone graft model were all significantly lower than those in non-bone graft model. The mean EQV stresses of bilateral anterior alveolar arches, the maximum EQV stresses of maxilla and its alveolar arch on the cleft side in the model with bone graft in lower 1/3 of the alveolar cleft were significantly higher than those in full alveolar cleft bone graft model.
For UCCLP, bilateral maxillae, pterygoid processes of sphenoid bones and bilateral nasomaxillary, zygomaticomaxillary, pterygomaxillary sutures, anterior alveolar arch on the non-cleft side are the main occlusal load-bearing structures before and after alveolar cleft bone graft. Alveolar cleft bone graft mainly affects biomechanical stabilities of nasal raphe and posterior alveolar arch, nasomaxillary suture on the non-cleft side. The areas near nasal floor and in the middle of the alveolar cleft are the key sites when bone grafting, and should be supplemented with bone graft when the bone resorbed in these areas.
目的在于阐明牙槽裂骨移植对单侧完全性唇腭裂(UCCLP)患者颌面部生物力学稳定性的影响,明确在牙槽裂骨移植中,当这些部位发生骨吸收时,哪些是关键部位,需要进行骨移植加以修复。
通过三维建模软件对 UCCLP 患者颌面部 CT 数据进行处理,获取非骨移植和完全上颌裂隙、完全牙槽裂骨移植、牙槽裂其他部位骨移植的颌面部 CAD(计算机辅助设计)模型。在有限元分析软件中获取咬合状态下颌骨的 EQV(等效)应力和骨缝的 EQV 应变。
在相应的咬合状态下,非裂隙侧上颌骨、相应侧蝶骨翼突和前牙槽弓的 EQV 应力大于其他颌骨,相应侧的鼻额缝、颧上颌缝和翼上颌缝的 EQV 应变大于其他颌骨缝。完全牙槽裂骨移植模型中,鼻中隔的平均 EQV 应变、非裂隙侧后牙槽弓的最大 EQV 应力、非裂隙侧鼻额缝的平均和最大 EQV 应变均显著低于非骨移植模型。在下 1/3 牙槽裂骨移植模型中,双侧前牙槽弓、裂隙侧上颌骨及其牙槽弓的平均 EQV 应力明显高于完全牙槽裂骨移植模型。
对于 UCCLP,双侧上颌骨、蝶骨翼突和双侧鼻额缝、颧上颌缝、翼上颌缝、非裂隙侧前牙槽弓是牙槽裂骨移植前后的主要咬合承重结构。牙槽裂骨移植主要影响鼻中隔和非裂隙侧后牙槽弓、鼻额缝的生物力学稳定性。鼻底和牙槽裂中部附近的区域是骨移植的关键部位,当这些部位发生骨吸收时,应进行骨移植修复。