Suppr超能文献

实验评估使用硅胶和水凝胶固体吸附剂的太阳能吸附淡化系统。

Experimental evaluation of a solar-driven adsorption desalination system using solid adsorbent of silica gel and hydrogel.

机构信息

Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.

Sharif Energy, Water and Environment Institute (SEWEI), Tehran, Iran.

出版信息

Environ Sci Pollut Res Int. 2022 Oct;29(47):71217-71231. doi: 10.1007/s11356-022-20680-6. Epub 2022 May 21.

Abstract

Nowadays, the world is facing a shortage of fresh water. Utilizing adsorbent materials to adsorb air moisture is a suitable method for producing freshwater, especially combining the adsorption desalination system with solar energy devices such as solar collectors. The low temperature of solar collectors has caused some water to remain in the adsorbents in the desorption process and has reduced the possibility of using these systems. In this research, for the first time, an evacuated tube collector (ETC) is used as an adsorbent bed so that the temperature of the desorption process reaches higher values and as a result, more fresh water is expected to produced. In this study, two adsorption desalination systems (ADS) are experimentally investigated. In the first system, a laboratory experimental setup using silica gel and hydrogel adsorbents is used to investigate freshwater production using each of the two adsorbents. The effect of different parameters such as variable adsorption and desorption time, variable temperature and humidity of inlet air, and variable adsorbent mesh sizes on the desalination process is evaluated. Then, in the second system, an innovative configuration of the solar-driven adsorption desalination system with an ETC full of silica gel is studied. In the laboratory experimental setup, the maximum amount of water produced by silica gel is 0.36 L/kg and by hydrogel is 0.58 L/kg. In the solar-driven adsorption desalination system, the largest amount of accumulated water production, daily efficiency, and cost per liter (CPL) of produced water are 1.518 kg/m day, 11.25%, and 0.0699 $/L, respectively. Therefore, this new configuration for an adsorption desalination system seems feasible.

摘要

如今,世界面临着淡水资源短缺的问题。利用吸附剂材料吸附空气湿度是生产淡水的一种合适方法,特别是将吸附脱附系统与太阳能装置(如太阳能集热器)相结合。太阳能集热器的低温导致部分水残留在脱附过程中的吸附剂中,降低了使用这些系统的可能性。在这项研究中,首次将真空管集热器(ETC)用作吸附床,以使脱附过程的温度达到更高的值,从而有望生产更多的淡水。在这项研究中,实验研究了两种吸附脱盐系统(ADS)。在第一个系统中,使用硅胶和水凝胶吸附剂的实验室实验装置用于研究使用两种吸附剂中的每一种生产淡水的情况。评估了不同参数(如吸附和脱附时间、进气温度和湿度以及吸附剂网孔尺寸的变化)对脱盐过程的影响。然后,在第二个系统中,研究了带有装满硅胶的 ETC 的太阳能驱动吸附脱盐系统的创新配置。在实验室实验装置中,硅胶的最大产水量为 0.36 L/kg,水凝胶的最大产水量为 0.58 L/kg。在太阳能驱动吸附脱盐系统中,最大累计产水量、日效率和单位产水成本分别为 1.518 kg/m 天、11.25%和 0.0699 美元/L。因此,这种新的吸附脱盐系统配置似乎是可行的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验