Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA.
Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA.
Pharmacol Ther. 2022 Dec;240:108213. doi: 10.1016/j.pharmthera.2022.108213. Epub 2022 May 18.
Adenosine is a ubiquitous endogenous nucleoside or autacoid that affects the cardiovascular system through the activation of four G-protein coupled receptors: adenosine A receptor (AAR), adenosine A receptor (AAR), adenosine A receptor (AAR), and adenosine A receptor (AAR). With the rapid generation of this nucleoside from cellular metabolism and the widespread distribution of its four G-protein coupled receptors in almost all organs and tissues of the body, this autacoid induces multiple physiological as well as pathological effects, not only regulating the cardiovascular system but also the central nervous system, peripheral vascular system, and immune system. Mounting evidence shows the role of CYP450-enzymes in cardiovascular physiology and pathology, and the genetic polymorphisms in CYP450s can increase susceptibility to cardiovascular diseases (CVDs). One of the most important physiological roles of CYP450-epoxygenases (CYP450-2C & CYP2J2) is the metabolism of arachidonic acid (AA) and linoleic acid (LA) into epoxyeicosatrienoic acids (EETs) and epoxyoctadecaenoic acid (EpOMEs) which generally involve in vasodilation. Like an increase in coronary reactive hyperemia (CRH), an increase in anti-inflammation, and cardioprotective effects. Moreover, the genetic polymorphisms in CYP450-epoxygenases will change the beneficial cardiovascular effects of metabolites or oxylipins into detrimental effects. The soluble epoxide hydrolase (sEH) is another crucial enzyme ubiquitously expressed in all living organisms and almost all organs and tissues. However, in contrast to CYP450-epoxygenases, sEH converts EETs into dihydroxyeicosatrienoic acid (DHETs), EpOMEs into dihydroxyoctadecaenoic acid (DiHOMEs), and others and reverses the beneficial effects of epoxy-fatty acids leading to vasoconstriction, reducing CRH, increase in pro-inflammation, increase in pro-thrombotic and become less cardioprotective. Therefore, polymorphisms in the sEH gene (Ephx2) cause the enzyme to become overactive, making it more vulnerable to CVDs, including hypertension. Besides the sEH, ω-hydroxylases (CYP450-4A11 & CYP450-4F2) derived metabolites from AA, ω terminal-hydroxyeicosatetraenoic acids (19-, 20-HETE), lipoxygenase-derived mid-chain hydroxyeicosatetraenoic acids (5-, 11-, 12-, 15-HETEs), and the cyclooxygenase-derived prostanoids (prostaglandins: PGD, PGF; thromboxane: Txs, oxylipins) are involved in vasoconstriction, hypertension, reduction in CRH, pro-inflammation and cardiac toxicity. Interestingly, the interactions of adenosine receptors (AAR, AAR) with CYP450-epoxygenases, ω-hydroxylases, sEH, and their derived metabolites or oxygenated polyunsaturated fatty acids (PUFAs or oxylipins) is shown in the regulation of the cardiovascular functions. In addition, much evidence demonstrates polymorphisms in CYP450-epoxygenases, ω-hydroxylases, and sEH genes (Ephx2) and adenosine receptor genes (ADORA1 & ADORA2) in the human population with the susceptibility to CVDs, including hypertension. CVDs are the number one cause of death globally, coronary artery disease (CAD) was the leading cause of death in the US in 2019, and hypertension is one of the most potent causes of CVDs. This review summarizes the articles related to the crosstalk between adenosine receptors and CYP450-derived oxylipins in vascular, including the CRH response in regular salt-diet fed and high salt-diet fed mice with the correlation of heart perfusate/plasma oxylipins. By using AAR, AAR, eNOS sEH or Ephx2, vascular sEH-overexpressed (Tie2-sEH Tr), vascular CYP2J2-overexpressed (Tie2-CYP2J2 Tr), and wild-type (WT) mice. This review article also summarizes the role of pro-and anti-inflammatory oxylipins in cardiovascular function/dysfunction in mice and humans. Therefore, more studies are needed better to understand the crosstalk between the adenosine receptors and eicosanoids to develop diagnostic and therapeutic tools by using plasma oxylipins profiles in CVDs, including hypertensive cases in the future.
腺苷是一种普遍存在的内源性核苷或自体活性物质,通过激活四种 G 蛋白偶联受体:腺苷 A 受体 (AAR)、腺苷 A 受体 (AAR)、腺苷 A 受体 (AAR) 和腺苷 A 受体 (AAR),对心血管系统产生影响。随着细胞代谢中这种核苷的快速产生以及其四种 G 蛋白偶联受体在体内几乎所有器官和组织中的广泛分布,这种自体活性物质会引起多种生理和病理效应,不仅调节心血管系统,还调节中枢神经系统、外周血管系统和免疫系统。越来越多的证据表明 CYP450 酶在心血管生理学和病理学中的作用,CYP450 酶的遗传多态性会增加患心血管疾病 (CVD) 的易感性。CYP450-环氧合酶 (CYP450-2C 和 CYP2J2) 的最重要的生理作用之一是将花生四烯酸 (AA) 和亚油酸 (LA) 代谢为环氧化物三烯酸 (EETs) 和环氧化物十八碳烯酸 (EpOMEs),这些物质通常参与血管扩张。例如,增加冠状动脉反应性充血 (CRH)、增加抗炎作用和心脏保护作用。此外,CYP450-环氧合酶的遗传多态性会将代谢物或氧化脂类的有益心血管作用改变为有害作用。可溶性环氧化物水解酶 (sEH) 是另一种在所有生物和几乎所有器官和组织中普遍表达的关键酶。然而,与 CYP450-环氧合酶不同,sEH 将 EETs 转化为二羟基二十碳三烯酸 (DHETs)、EpOMEs 转化为二羟基十八碳烯酸 (DiHOMEs) 和其他物质,并逆转环氧脂肪酸的有益作用,导致血管收缩、减少 CRH、增加促炎作用、增加促血栓形成作用和降低心脏保护作用。因此,sEH 基因 (Ephx2) 的多态性导致酶过度活跃,使机体更容易患上 CVD,包括高血压。除了 sEH 之外,来源于 AA 的 ω-羟化酶 (CYP450-4A11 和 CYP450-4F2)、ω 末端-羟二十碳四烯酸 (19-、20-HETE)、脂氧合酶衍生的中链羟二十碳四烯酸 (5-、11-、12-、15-HETEs) 和环加氧酶衍生的前列腺素 (PGD、PGF;血栓烷:Txs、氧化脂类) 参与血管收缩、高血压、CRH 减少、促炎作用和心脏毒性。有趣的是,腺苷受体 (AAR、AAR) 与 CYP450-环氧合酶、ω-羟化酶、sEH 及其衍生代谢物或氧化多不饱和脂肪酸 (PUFAs 或氧化脂类) 的相互作用,调节心血管功能。此外,大量证据表明,人群中 CYP450-环氧合酶、ω-羟化酶和 sEH 基因 (Ephx2) 以及腺苷受体基因 (ADORA1 和 ADORA2) 的多态性与 CVD 包括高血压的易感性有关。CVD 是全球头号死因,2019 年美国冠心病是导致死亡的首要原因,高血压是 CVD 最主要的病因之一。本综述总结了与血管中腺苷受体和 CYP450 衍生的氧化脂类之间相互作用相关的文章,包括在正常盐饮食和高盐饮食喂养的小鼠中 CRH 反应,以及心脏灌流液/血浆氧化脂类的相关性。使用 AAR、AAR、eNOS sEH 或 Ephx2、血管 sEH 过表达 (Tie2-sEH Tr)、血管 CYP2J2 过表达 (Tie2-CYP2J2 Tr) 和野生型 (WT) 小鼠。这篇综述文章还总结了在小鼠和人类中,促炎和抗炎氧化脂类在心血管功能/功能障碍中的作用。因此,未来需要更多的研究来更好地了解腺苷受体和类二十烷酸之间的相互作用,以利用 CVD 包括高血压患者的血浆氧化脂类谱开发诊断和治疗工具。