Litman Y, Pós E S, Box C L, Martinazzo R, Maurer R J, Rossi M
MPI for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany.
Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.
J Chem Phys. 2022 May 21;156(19):194107. doi: 10.1063/5.0088400.
In Paper I [Litman et al., J. Chem. Phys. (in press) (2022)], we presented the ring-polymer instanton with explicit friction (RPI-EF) method and showed how it can be connected to the ab initio electronic friction formalism. This framework allows for the calculation of tunneling reaction rates that incorporate the quantum nature of the nuclei and certain types of non-adiabatic effects (NAEs) present in metals. In this paper, we analyze the performance of RPI-EF on model potentials and apply it to realistic systems. For a 1D double-well model, we benchmark the method against numerically exact results obtained from multi-layer multi-configuration time-dependent Hartree calculations. We demonstrate that RPI-EF is accurate for medium and high friction strengths and less accurate for extremely low friction values. We also show quantitatively how the inclusion of NAEs lowers the crossover temperature into the deep tunneling regime, reduces the tunneling rates, and, in certain regimes, steers the quantum dynamics by modifying the tunneling pathways. As a showcase of the efficiency of this method, we present a study of hydrogen and deuterium hopping between neighboring interstitial sites in selected bulk metals. The results show that multidimensional vibrational coupling and nuclear quantum effects have a larger impact than NAEs on the tunneling rates of diffusion in metals. Together with Paper I [Litman et al., J. Chem. Phys. (in press) (2022)], these results advance the calculations of dissipative tunneling rates from first principles.
在论文I [利特曼等人,《化学物理杂志》(即将发表)(2022年)] 中,我们提出了具有显式摩擦的环聚合物瞬子(RPI-EF)方法,并展示了它如何与从头算电子摩擦形式理论相联系。该框架允许计算隧穿反应速率,其中纳入了原子核的量子性质以及金属中存在的某些类型的非绝热效应(NAEs)。在本文中,我们分析了RPI-EF在模型势上的性能,并将其应用于实际系统。对于一维双阱模型,我们将该方法与从多层多组态含时哈特里计算获得的数值精确结果进行基准测试。我们证明,RPI-EF对于中等和高摩擦强度是准确的,而对于极低摩擦值则不太准确。我们还定量地展示了纳入NAEs如何降低进入深隧穿区域的交叉温度、降低隧穿速率,并且在某些区域通过修改隧穿路径来引导量子动力学。作为该方法效率的一个展示,我们对选定体金属中相邻间隙位置之间的氢和氘跳跃进行了研究。结果表明,多维振动耦合和核量子效应比NAEs对金属中扩散的隧穿速率有更大的影响。与论文I [利特曼等人,《化学物理杂志》(即将发表)(2022年)] 一起,这些结果推动了从第一原理计算耗散隧穿速率的研究。