Suppr超能文献

Finite-temperature atomic relaxations: Effect on the temperature-dependent C elastic constants of Si and BAs.

作者信息

Malica Cristiano, Dal Corso Andrea

机构信息

International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy.

出版信息

J Chem Phys. 2022 May 21;156(19):194111. doi: 10.1063/5.0093376.

Abstract

The effect of atomic relaxations on the temperature-dependent elastic constants (TDECs) is usually taken into account at zero temperature by the minimization of the total energy at each strain. In this paper, we investigate the order of magnitude of this approximation on a paradigmatic example: the C elastic constant of diamond and zincblende materials. We estimate the effect of finite-temperature atomic relaxations within the quasi-harmonic approximation by computing ab initio the internal strain tensor from the second derivatives of the Helmholtz free-energy with respect to strain and atomic displacements. We apply our approach to Si and BAs and find a visible difference between the softening of the TDECs computed with the zero-temperature and finite-temperature atomic relaxations. In Si, the softening of C passes from 8.6% to 4.5%, between T = 0 K and T = 1200 K. In BAs, it passes from 8% to 7%, in the same range of temperatures. Finally, from the computed elastic constant corrections, we derive the temperature-dependent Kleinman parameter, which is usually measured in experiments.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验