Malica Cristiano, Dal Corso Andrea
International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy.
J Chem Phys. 2022 May 21;156(19):194111. doi: 10.1063/5.0093376.
The effect of atomic relaxations on the temperature-dependent elastic constants (TDECs) is usually taken into account at zero temperature by the minimization of the total energy at each strain. In this paper, we investigate the order of magnitude of this approximation on a paradigmatic example: the C elastic constant of diamond and zincblende materials. We estimate the effect of finite-temperature atomic relaxations within the quasi-harmonic approximation by computing ab initio the internal strain tensor from the second derivatives of the Helmholtz free-energy with respect to strain and atomic displacements. We apply our approach to Si and BAs and find a visible difference between the softening of the TDECs computed with the zero-temperature and finite-temperature atomic relaxations. In Si, the softening of C passes from 8.6% to 4.5%, between T = 0 K and T = 1200 K. In BAs, it passes from 8% to 7%, in the same range of temperatures. Finally, from the computed elastic constant corrections, we derive the temperature-dependent Kleinman parameter, which is usually measured in experiments.