Suppr超能文献

中枢神经系统的 micro-CT 可视化:不同对比增强技术在记录蜘蛛脑中的性能。

Micro-CT visualization of the CNS: Performance of different contrast-enhancing techniques for documenting the spider brain.

机构信息

Understanding Evolution Research Group, Naturalis Biodiversity Center, Leiden, The Netherlands.

Institute for Biology Leiden (IBL), Leiden University, Leiden, The Netherlands.

出版信息

J Comp Neurol. 2022 Oct;530(14):2474-2485. doi: 10.1002/cne.25343. Epub 2022 May 21.

Abstract

Spider brain and central nervous system (CNS) have remained unexplored, due in part to the difficulty of observing these organs, usually only possible through histological preparations. Recently, internal anatomy studies have been supplemented by the inclusion of X- ray micro-CT. Unmineralized tissue such as the body of invertebrates requires a staining process to enhance tissue X-ray absorption and improve contrast during observation. Many current protocols are based on iodine staining requiring critical point drying (CPD) of the sample for optimal contrast. This process induces shrinking of the soft tissue generating artifacts in the morphology, volume, and even position of internal structures. Phosphotungstic acid (PTA) is an alternative staining agent recently used in marine invertebrate and plant studies. Here, we used several specimens of the common spider Araneus diadematus to visualize the spider brain and compare both contrast-enhancing ethanol-based solutions. We assessed a gradient of staining times, observed and tested the repercussions of CPD, and examined the use of vacuum to accelerate PTA diffusion. We show that PTA provides the best contrast on micro-CT scans in ethanol eliminating the need for CPD, and offering more realistic in situ visualizations of the internal organs. In combination with different scanning settings, PTA allowed observation of internal organs like the CNS, digestive system, muscles, and finer structures like the retina, visual nerves, and optic neuropiles. This fast and less invasive method could facilitate the proper documentation of the internal anatomy in the context of evolutionary, developmental and functional studies.

摘要

蜘蛛的脑部和中枢神经系统(CNS)一直未被探索,部分原因是观察这些器官存在困难,通常只能通过组织学准备来实现。最近,通过包括 X 射线微计算机断层扫描(micro-CT)在内的方法,对内部解剖结构的研究得到了补充。无矿化组织(如无脊椎动物的身体)需要进行染色处理,以增强组织对 X 射线的吸收,并在观察过程中提高对比度。许多现有的方案都基于碘染色,需要对样本进行临界点干燥(CPD)以获得最佳对比度。这一过程会导致软组织收缩,从而在形态、体积甚至内部结构的位置上产生伪影。磷钨酸(PTA)是一种最近在海洋无脊椎动物和植物研究中使用的替代染色剂。在这里,我们使用了几种常见蜘蛛 Araneus diadematus 的标本来可视化蜘蛛的大脑,并比较了两种增强对比度的基于乙醇的溶液。我们评估了一系列染色时间,观察并测试了 CPD 的影响,并检查了使用真空来加速 PTA 扩散的效果。结果表明,PTA 在乙醇中的微 CT 扫描中提供了最佳的对比度,无需 CPD,并且为内部器官提供了更逼真的原位可视化效果。结合不同的扫描设置,PTA 可以观察到 CNS、消化系统、肌肉等内部器官,以及视网膜、视觉神经和视神经节等更精细的结构。这种快速、侵入性较小的方法可以促进在进化、发育和功能研究背景下对内部解剖结构进行适当的记录。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6754/9540357/6ce4d636154d/CNE-530-2474-g005.jpg

相似文献

1
Micro-CT visualization of the CNS: Performance of different contrast-enhancing techniques for documenting the spider brain.
J Comp Neurol. 2022 Oct;530(14):2474-2485. doi: 10.1002/cne.25343. Epub 2022 May 21.
2
Visualization of porcine eye anatomy by X-ray microtomography.
Exp Eye Res. 2018 Feb;167:51-55. doi: 10.1016/j.exer.2017.11.004. Epub 2017 Nov 22.
3
Phosphotungstic acid-enhanced microCT: Optimized protocols for embryonic and early postnatal mice.
Dev Dyn. 2020 Apr;249(4):573-585. doi: 10.1002/dvdy.136. Epub 2019 Nov 28.
5
8
Evaluation of contrasting techniques for X-ray imaging of velvet worms (Onychophora).
J Microsc. 2018 Jun;270(3):343-358. doi: 10.1111/jmi.12688. Epub 2018 Feb 22.
9
Iodine-enhanced micro-CT imaging: methodological refinements for the study of the soft-tissue anatomy of post-embryonic vertebrates.
J Exp Zool B Mol Dev Evol. 2014 May;322(3):166-76. doi: 10.1002/jez.b.22561. Epub 2014 Jan 30.

引用本文的文献

3
Bioimaging marine crustacean brain: quantitative comparison of micro-CT preparations in an Alpheid snapping shrimp.
Front Neurosci. 2024 Nov 26;18:1428825. doi: 10.3389/fnins.2024.1428825. eCollection 2024.
4
Revisiting the scorpion central nervous system using microCT.
Sci Rep. 2024 Nov 14;14(1):27961. doi: 10.1038/s41598-024-76917-6.
5
A three-dimensional immunofluorescence atlas of the brain of the hackled-orb weaver spider, .
bioRxiv. 2024 Sep 9:2024.09.05.611298. doi: 10.1101/2024.09.05.611298.
6
The effects of artificial light at night on spider brains.
Biol Lett. 2024 Sep;20(9):20240202. doi: 10.1098/rsbl.2024.0202. Epub 2024 Sep 4.

本文引用的文献

4
Evolution and development of three highly specialized floral structures of bee-pollinated species.
Evodevo. 2020 Aug 10;11:16. doi: 10.1186/s13227-020-00160-z. eCollection 2020.
5
Variations on a theme: Morphological variation in the secondary eye visual pathway across the order of Araneae.
J Comp Neurol. 2021 Feb;529(2):259-280. doi: 10.1002/cne.24945. Epub 2020 Jul 13.
7
8
Visual pathways in the brain of the jumping spider Marpissa muscosa.
J Comp Neurol. 2020 Jul 15;528(11):1883-1902. doi: 10.1002/cne.24861. Epub 2020 Feb 12.
9
Anatomical study of the coffee berry borer (Hypothenemus hampei) using micro-computed tomography.
Sci Rep. 2019 Nov 20;9(1):17150. doi: 10.1038/s41598-019-53537-z.
10
Phosphotungstic acid-enhanced microCT: Optimized protocols for embryonic and early postnatal mice.
Dev Dyn. 2020 Apr;249(4):573-585. doi: 10.1002/dvdy.136. Epub 2019 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验