Suppr超能文献

分数阶PID控制器设计的解析综合

An analytical synthesis of fractional order PID controller design.

作者信息

Chen Pengchong, Luo Ying

机构信息

Department of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430070, China.

Department of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430070, China.

出版信息

ISA Trans. 2022 Dec;131:124-136. doi: 10.1016/j.isatra.2022.04.047. Epub 2022 May 9.

Abstract

This paper proposed a comprehensive synthesis of fractional order PID (FOPID) controller analytical design, which is illustrated through the typical first order plus normalized time delay (FOPNTD) systems, with fulfilling five frequency-domain specifications simultaneously: phase margin (ϕ), gain margin (A), phase crossover frequency (ω), gain crossover frequency (ω) and a "flat phase" constraint. The control loop shape can be adjusted with wide freedom according to the five design specifications, which can all be beneficial on optimizing the control system: ω represents the system control bandwidth and response speed, ϕ and A guarantee the stability, and flat phase constraint keeps the system with iso-damping property on robustness of loop gain variations. The impact of ω adjustment is thoroughly discovered via frequency-domain analysis and also time-domain analysis with low-frequency disturbance and high-frequency noise. The frequency response functions are presented to show the loop-shaping advantages of the proposed synthesis scheme. A further in-depth study on designing guideline is also presented: the feasible region of four specifications, e.g. ω, ω, ϕ and A, can all be collected and visualized in the multi-dimensional graphics. This feasible region gives users prior information and great flexibility before the controller design. Simulation results using the designed FOPID controller are carried out to demonstrate the performance advantages over the optimized integer-order PID, three-parameter FOPID, fractional filter-fractional order PID and Ziegler-Nichols FOPID controllers.

摘要

本文提出了一种分数阶PID(FOPID)控制器解析设计的综合方法,通过典型的一阶加归一化时间延迟(FOPNTD)系统进行说明,该方法能同时满足五个频域指标:相位裕度(ϕ)、增益裕度(A)、相位穿越频率(ω)、增益穿越频率(ω)以及“平坦相位”约束。根据这五个设计指标,可以非常自由地调整控制回路形状,这对优化控制系统都有益处:ω代表系统控制带宽和响应速度,ϕ和A保证稳定性,平坦相位约束使系统在回路增益变化的鲁棒性方面具有等阻尼特性。通过频域分析以及带有低频干扰和高频噪声的时域分析,全面探究了ω调整的影响。给出了频率响应函数以展示所提综合方案的回路整形优势。还对设计准则进行了更深入的研究:例如ω、ω、ϕ和A这四个指标的可行区域都可以收集并在多维图形中可视化。这个可行区域在控制器设计之前为用户提供了先验信息和很大的灵活性。使用所设计的FOPID控制器进行了仿真结果展示,以证明其相对于优化的整数阶PID、三参数FOPID、分数滤波器 - 分数阶PID和齐格勒 - 尼科尔斯FOPID控制器的性能优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验