Suppr超能文献

使用对比分离的自监督深度学习配准进行原生心肌 T 映射的运动校正。

Motion correction for native myocardial T mapping using self-supervised deep learning registration with contrast separation.

机构信息

Center for Biomedical Imaging Research (CBIR), School of Medicine, Tsinghua University, Beijing, China.

School of Biomedical Engineering, ShanghaiTech University, Shanghai, China.

出版信息

NMR Biomed. 2022 Oct;35(10):e4775. doi: 10.1002/nbm.4775. Epub 2022 Jun 15.

Abstract

In myocardial T mapping, undesirable motion poses significant challenges because uncorrected motion can affect T estimation accuracy and cause incorrect diagnosis. In this study, we propose and evaluate a motion correction method for myocardial T mapping using self-supervised deep learning based registration with contrast separation (SDRAP). A sparse coding based method was first proposed to separate the contrast component from T -weighted (T1w) images. Then, a self-supervised deep neural network with cross-correlation (SDRAP-CC) or mutual information as the registration similarity measurement was developed to register contrast separated images, after which signal fitting was performed on the motion corrected T1w images to generate motion corrected T maps. The registration network was trained and tested in 80 healthy volunteers with images acquired using the modified Look-Locker inversion recovery (MOLLI) sequence. The proposed SDRAP was compared with the free form deformation (FFD) registration method regarding (1) Dice similarity coefficient (DSC) and mean boundary error (MBE) of myocardium contours, (2) T value and standard deviation (SD) of T fitting, (3) subjective evaluation score for overall image quality and motion artifact level, and (4) computation time. Results showed that SDRAP-CC achieved the highest DSC of 85.0 ± 3.9% and the lowest MBE of 0.92 ± 0.25 mm among the methods compared. Additionally, SDRAP-CC performed the best by resulting in lower SD value (28.1 ± 17.6 ms) and higher subjective image quality scores (3.30 ± 0.79 for overall quality and 3.53 ± 0.68 for motion artifact) evaluated by a cardiologist. The proposed SDRAP took only 0.52 s to register one slice of MOLLI images, achieving about sevenfold acceleration over FFD (3.7 s/slice).

摘要

在心肌 T 映射中,不理想的运动带来了重大挑战,因为未校正的运动可能会影响 T 估计的准确性并导致错误的诊断。在这项研究中,我们提出并评估了一种使用基于对比分离的自监督深度学习的心肌 T 映射运动校正方法(SDRAP)。首先提出了一种基于稀疏编码的方法,用于从 T1 加权(T1w)图像中分离对比分量。然后,开发了一种具有互相关(SDRAP-CC)或互信息作为配准相似性度量的自监督深度神经网络,以对分离出的对比图像进行配准,然后对运动校正的 T1w 图像进行信号拟合,生成运动校正的 T 图。在使用改进的 Look-Locker 反转恢复(MOLLI)序列采集图像的 80 名健康志愿者中对注册网络进行了训练和测试。比较了所提出的 SDRAP 与自由变形(FFD)注册方法,比较了(1)心肌轮廓的 Dice 相似系数(DSC)和平均边界误差(MBE),(2)T 拟合的 T 值和标准差(SD),(3)整体图像质量和运动伪影水平的主观评估得分,以及(4)计算时间。结果表明,SDRAP-CC 实现了最高的 DSC(85.0±3.9%)和最低的 MBE(0.92±0.25mm)。此外,SDRAP-CC 的 SD 值(28.1±17.6ms)最低,且由心脏病专家评估的整体图像质量(3.30±0.79)和运动伪影(3.53±0.68)的主观图像质量评分最高,表现最佳。所提出的 SDRAP 只需 0.52s 即可注册一张 MOLLI 图像,与 FFD(3.7s/切片)相比,速度提高了约 7 倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验