Suppr超能文献

木质素-纤维素前驱体向碳纤维的连续稳定化和碳化

Continuous Stabilization and Carbonization of a Lignin-Cellulose Precursor to Carbon Fiber.

作者信息

Bengtsson Andreas, Bengtsson Jenny, Jedvert Kerstin, Kakkonen Markus, Tanhuanpää Olli, Brännvall Elisabet, Sedin Maria

机构信息

Division Bioeconomy and Health, RISE Research Institutes of Sweden, P.O. Box 5604, SE-114 86 Stockholm, Sweden.

Division Material and Production, RISE Research Institutes of Sweden, P.O. Box 104, SE-431 22 Mölndal, Sweden.

出版信息

ACS Omega. 2022 May 5;7(19):16793-16802. doi: 10.1021/acsomega.2c01806. eCollection 2022 May 17.

Abstract

The demand for carbon fibers (CFs) based on renewable raw materials as the reinforcing fiber in composites for lightweight applications is growing. Lignin-cellulose precursor fibers (PFs) are a promising alternative, but so far, there is limited knowledge of how to continuously convert these PFs under industrial-like conditions into CFs. Continuous conversion is vital for the industrial production of CFs. In this work, we have compared the continuous conversion of lignin-cellulose PFs (50 wt % softwood kraft lignin and 50 wt % dissolving-grade kraft pulp) with batchwise conversion. The PFs were successfully stabilized and carbonized continuously over a total time of 1.0-1.5 h, comparable to the industrial production of CFs from polyacrylonitrile. CFs derived continuously at 1000 °C with a relative stretch of -10% (fiber contraction) had a conversion yield of 29 wt %, a diameter of 12-15 μm, a Young's modulus of 46-51 GPa, and a tensile strength of 710-920 MPa. In comparison, CFs obtained at 1000 °C via batchwise conversion (12-15 μm diameter) with a relative stretch of 0% and a conversion time of 7 h (due to the low heating and cooling rates) had a higher conversion yield of 34 wt %, a higher Young's modulus (63-67 GPa) but a similar tensile strength (800-920 MPa). This suggests that the Young's modulus can be improved by the optimization of the fiber tension, residence time, and temperature profile during continuous conversion, while a higher tensile strength can be achieved by reducing the fiber diameter as it minimizes the risk of critical defects.

摘要

在轻量化应用的复合材料中,对以可再生原料为增强纤维的碳纤维(CFs)的需求正在增长。木质素 - 纤维素前驱体纤维(PFs)是一种很有前途的替代品,但到目前为止,关于如何在类似工业的条件下将这些PFs连续转化为CFs的知识还很有限。连续转化对于CFs的工业生产至关重要。在这项工作中,我们将木质素 - 纤维素PFs(50 wt%软木硫酸盐木质素和50 wt%溶解级硫酸盐浆)的连续转化与间歇转化进行了比较。PFs在总共1.0 - 1.5小时的时间内成功地连续稳定化和碳化,这与从聚丙烯腈工业生产CFs的情况相当。在1000°C下以 - 10%的相对拉伸率(纤维收缩)连续得到的CFs,其转化率为29 wt%,直径为12 - 15μm,杨氏模量为46 - 51 GPa,拉伸强度为710 - 920 MPa。相比之下,通过间歇转化在1000°C下(直径12 - 15μm)以0%的相对拉伸率和7小时的转化时间(由于加热和冷却速率低)得到的CFs,其转化率更高,为34 wt%,杨氏模量更高(63 - 67 GPa),但拉伸强度相似(800 - 920 MPa)。这表明,在连续转化过程中,通过优化纤维张力、停留时间和温度分布可以提高杨氏模量,而通过减小纤维直径可以实现更高的拉伸强度,因为这将关键缺陷的风险降至最低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验