Bengtsson Andreas, Bengtsson Jenny, Jedvert Kerstin, Kakkonen Markus, Tanhuanpää Olli, Brännvall Elisabet, Sedin Maria
Division Bioeconomy and Health, RISE Research Institutes of Sweden, P.O. Box 5604, SE-114 86 Stockholm, Sweden.
Division Material and Production, RISE Research Institutes of Sweden, P.O. Box 104, SE-431 22 Mölndal, Sweden.
ACS Omega. 2022 May 5;7(19):16793-16802. doi: 10.1021/acsomega.2c01806. eCollection 2022 May 17.
The demand for carbon fibers (CFs) based on renewable raw materials as the reinforcing fiber in composites for lightweight applications is growing. Lignin-cellulose precursor fibers (PFs) are a promising alternative, but so far, there is limited knowledge of how to continuously convert these PFs under industrial-like conditions into CFs. Continuous conversion is vital for the industrial production of CFs. In this work, we have compared the continuous conversion of lignin-cellulose PFs (50 wt % softwood kraft lignin and 50 wt % dissolving-grade kraft pulp) with batchwise conversion. The PFs were successfully stabilized and carbonized continuously over a total time of 1.0-1.5 h, comparable to the industrial production of CFs from polyacrylonitrile. CFs derived continuously at 1000 °C with a relative stretch of -10% (fiber contraction) had a conversion yield of 29 wt %, a diameter of 12-15 μm, a Young's modulus of 46-51 GPa, and a tensile strength of 710-920 MPa. In comparison, CFs obtained at 1000 °C via batchwise conversion (12-15 μm diameter) with a relative stretch of 0% and a conversion time of 7 h (due to the low heating and cooling rates) had a higher conversion yield of 34 wt %, a higher Young's modulus (63-67 GPa) but a similar tensile strength (800-920 MPa). This suggests that the Young's modulus can be improved by the optimization of the fiber tension, residence time, and temperature profile during continuous conversion, while a higher tensile strength can be achieved by reducing the fiber diameter as it minimizes the risk of critical defects.
在轻量化应用的复合材料中,对以可再生原料为增强纤维的碳纤维(CFs)的需求正在增长。木质素 - 纤维素前驱体纤维(PFs)是一种很有前途的替代品,但到目前为止,关于如何在类似工业的条件下将这些PFs连续转化为CFs的知识还很有限。连续转化对于CFs的工业生产至关重要。在这项工作中,我们将木质素 - 纤维素PFs(50 wt%软木硫酸盐木质素和50 wt%溶解级硫酸盐浆)的连续转化与间歇转化进行了比较。PFs在总共1.0 - 1.5小时的时间内成功地连续稳定化和碳化,这与从聚丙烯腈工业生产CFs的情况相当。在1000°C下以 - 10%的相对拉伸率(纤维收缩)连续得到的CFs,其转化率为29 wt%,直径为12 - 15μm,杨氏模量为46 - 51 GPa,拉伸强度为710 - 920 MPa。相比之下,通过间歇转化在1000°C下(直径12 - 15μm)以0%的相对拉伸率和7小时的转化时间(由于加热和冷却速率低)得到的CFs,其转化率更高,为34 wt%,杨氏模量更高(63 - 67 GPa),但拉伸强度相似(800 - 920 MPa)。这表明,在连续转化过程中,通过优化纤维张力、停留时间和温度分布可以提高杨氏模量,而通过减小纤维直径可以实现更高的拉伸强度,因为这将关键缺陷的风险降至最低。