Denk Jakob, Liao Xiaojian, Knolle Wolfgang, Kahnt Axel, Greiner Andreas, Schafföner Stefan, Agarwal Seema, Motz Günter
Chair of Ceramic Materials Engineering, University of Bayreuth, 95440, Bayreuth, Germany.
Macromolecular Chemistry 2 and Bavarian Polymer Institute, University of Bayreuth, 95440, Bayreuth, Germany.
Sci Rep. 2024 Aug 5;14(1):18143. doi: 10.1038/s41598-024-68794-w.
In this study, multifibrillar carbon and carbon/ceramic (C/SiCON) fibers consisting of thousands of single nanofibers are continuously manufactured. The process starts with electrospinning of polyacrylonitrile (PAN) and PAN/oligosilazane precursors resulting in poorly aligned polymer fibers. Subsequent stretching leads to parallel aligned multifibrillar fibers, which are continuously stabilized and pyrolyzed to C or C/SiCON hybrid fibers. The multifibrillar carbon fibers show a high tensile strength of 911 MPa and Young's modulus of 154 GPa, whereas the multifibrillar C/SiCON fibers initially have only tensile strengths of 407 MPa and Young's modulus of 77 GPa, due to sticking of the nanofibers during the stabilization in air. Additional curing with electron beam radiation, results in a remarkable increase in tensile strength of 707 MPa and Young's modulus of 98 GPa. The good mechanical properties are highlighted by the low linear density of the multifibrillar C/SiCON fibers (~ 1 tex) compared to conventional C and SiC fiber bundles (~ 200 tex). In combination with the large surface area of the fibers better mechanical properties of respective composites with a reduced fiber content can be achieved. In addition, the developed approach offers high potential to produce advanced endless multifibrillar carbon and C/SiCON nanofibers in an industrial scale.
在本研究中,由数千根单纳米纤维组成的多纤丝状碳和碳/陶瓷(C/SiCON)纤维得以连续制造。该过程始于聚丙烯腈(PAN)和PAN/低聚硅氮烷前驱体的静电纺丝,从而得到排列不佳的聚合物纤维。随后的拉伸产生平行排列的多纤丝状纤维,这些纤维被连续稳定化并热解为C或C/SiCON混合纤维。多纤丝状碳纤维显示出911MPa的高拉伸强度和154GPa的杨氏模量,而多纤丝状C/SiCON纤维由于在空气中稳定化过程中纳米纤维的粘连,最初仅具有407MPa的拉伸强度和77GPa的杨氏模量。通过电子束辐射进行额外固化,可使拉伸强度显著提高至707MPa,杨氏模量提高至98GPa。与传统的C和SiC纤维束(约200tex)相比,多纤丝状C/SiCON纤维的低线密度(约1tex)突出了其良好的机械性能。结合纤维的大表面积,使用减少的纤维含量即可实现相应复合材料更好的机械性能。此外,所开发的方法具有在工业规模上生产先进的连续多纤丝状碳和C/SiCON纳米纤维的巨大潜力。