Suppr超能文献

使用监督式机器学习算法预测现金持有量。

Predicting cash holdings using supervised machine learning algorithms.

作者信息

Özlem Şirin, Tan Omer Faruk

机构信息

Department of Industrial Engineering, Faculty of Engineering, MEF University, Istanbul, Turkey.

Department of Accounting and Finance, Faculty of Business Administration, Marmara University, Istanbul, Turkey.

出版信息

Financ Innov. 2022;8(1):44. doi: 10.1186/s40854-022-00351-8. Epub 2022 May 18.

Abstract

This study predicts the cash holdings policy of Turkish firms, given the 20 selected features with machine learning algorithm methods. 211 listed firms in the Borsa Istanbul are analyzed over the period between 2006 and 2019. Multiple linear regression (MLR), k-nearest neighbors (KNN), support vector regression (SVR), decision trees (DT), extreme gradient boosting algorithm (XGBoost) and multi-layer neural networks (MLNN) are used for prediction. Results reveal that MLR, KNN, and SVR provide high root mean square error (RMSE) and low R values. Meanwhile, more complex algorithms, such as DT and especially XGBoost, derive higher accuracy with a 0.73 R value. Therefore, using advanced machine learning algorithms, we may predict cash holdings considerably.

摘要

本研究利用机器学习算法方法,基于20个选定特征预测土耳其公司的现金持有政策。对2006年至2019年期间在伊斯坦布尔证券交易所上市的211家公司进行了分析。使用多元线性回归(MLR)、k近邻(KNN)、支持向量回归(SVR)、决策树(DT)、极端梯度提升算法(XGBoost)和多层神经网络(MLNN)进行预测。结果显示,MLR、KNN和SVR的均方根误差(RMSE)较高,R值较低。同时,更复杂的算法,如DT,尤其是XGBoost,得出的准确率更高,R值为0.73。因此,使用先进的机器学习算法,我们可以相当准确地预测现金持有情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11a3/9113774/fe49fc0cdf0a/40854_2022_351_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验