Tarwidi Dede, Pudjaprasetya Sri Redjeki, Adytia Didit, Apri Mochamad
Industrial and Financial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia.
School of Computing, Telkom University, Bandung, Indonesia.
MethodsX. 2023 Mar 10;10:102119. doi: 10.1016/j.mex.2023.102119. eCollection 2023.
Accurate and computationally efficient prediction of wave run-up is required to mitigate the impacts of inundation and erosion caused by tides, storm surges, and even tsunami waves. The conventional methods for calculating wave run-up involve physical experiments or numerical modeling. Machine learning methods have recently become a part of wave run-up model development due to their robustness in dealing with large and complex data. In this paper, an extreme gradient boosting (XGBoost)-based machine learning method is introduced for predicting wave run-up on a sloping beach. More than 400 laboratory observations of wave run-up were utilized as training datasets to construct the XGBoost model. The hyperparameter tuning through the grid search approach was performed to obtain an optimized XGBoost model. The performance of the XGBoost method is compared to that of three different machine learning approaches: multiple linear regression (MLR), support vector regression (SVR), and random forest (RF). The validation evaluation results demonstrate that the proposed algorithm outperforms other machine learning approaches in predicting the wave run-up with a correlation coefficient ( ) of 0.98675, a mean absolute percentage error (MAPE) of 6.635%, and a root mean squared error (RMSE) of 0.03902. Compared to empirical formulas, which are often limited to a fixed range of slopes, the XGBoost model is applicable over a broader range of beach slopes and incident wave amplitudes.•The optimized XGBoost method is a feasible alternative to existing empirical formulas and classical numerical models for predicting wave run-up.•Hyperparameter tuning is performed using the grid search method, resulting in a highly accurate machine-learning model.•Our findings indicate that the XGBoost method is more applicable than empirical formulas and more efficient than numerical models.
为减轻潮汐、风暴潮甚至海啸波造成的淹没和侵蚀影响,需要对波浪爬高进行准确且计算高效的预测。计算波浪爬高的传统方法包括物理实验或数值模拟。机器学习方法因其在处理大量复杂数据方面的稳健性,最近已成为波浪爬高模型开发的一部分。本文介绍了一种基于极端梯度提升(XGBoost)的机器学习方法,用于预测斜坡海滩上的波浪爬高。利用400多个波浪爬高的实验室观测数据作为训练数据集来构建XGBoost模型。通过网格搜索方法进行超参数调整,以获得优化的XGBoost模型。将XGBoost方法的性能与三种不同的机器学习方法进行比较:多元线性回归(MLR)、支持向量回归(SVR)和随机森林(RF)。验证评估结果表明,所提出的算法在预测波浪爬高方面优于其他机器学习方法,相关系数为0.98675,平均绝对百分比误差(MAPE)为6.635%,均方根误差(RMSE)为0.03902。与通常限于固定坡度范围的经验公式相比,XGBoost模型适用于更广泛的海滩坡度和入射波振幅范围。
•优化后的XGBoost方法是预测波浪爬高的现有经验公式和经典数值模型的可行替代方法。
•使用网格搜索方法进行超参数调整,得到了一个高度准确的机器学习模型。
•我们的研究结果表明,XGBoost方法比经验公式更适用,比数值模型更高效。