Suppr超能文献

果蝇中性别特异性味觉器官的种间变异。

Interspecific variation in sex-specific gustatory organs in Drosophila.

机构信息

Department of Evolution and Ecology, University of California Davis, Davis, California, USA.

出版信息

J Comp Neurol. 2022 Oct;530(14):2439-2450. doi: 10.1002/cne.25340. Epub 2022 May 23.

Abstract

Drosophila males use leg gustatory bristles to discriminate between male and female cuticular pheromones as an important part of courtship behavior. In Drosophila melanogaster, several male-specific gustatory bristles are present on the anterior surface of the first tarsal segment of the prothoracic leg, in addition to a larger set of gustatory bristles found in both sexes. These bristles are thought to be specialized for pheromone detection. Here, we report the number and location of sex-specific gustatory bristles in 27 other Drosophila species. Although some species have a pattern similar to D. melanogaster, others lack anterior male-specific bristles but have many dorsal male-specific gustatory bristles instead. Some species have both anterior and dorsal male-specific bristles, while others lack sexual dimorphism entirely. In several distantly related species, the number of gustatory bristles is much greater in males than in females due to a male-specific transformation of ancestrally mechanosensory bristles to a chemosensory identity. This variation in the extent and pattern of sexual dimorphism may affect the formation and function of neuronal circuits that control Drosophila courtship and contribute to the evolution of mating behavior.

摘要

果蝇雄虫利用腿部味觉刚毛来区分雌雄体表信息素,这是求偶行为的重要组成部分。在黑腹果蝇中,前胸腿第一节的前表面存在几个雄性特有的味觉刚毛,此外两性都有更大的一组味觉刚毛。这些刚毛被认为是专门用于检测信息素的。在这里,我们报告了 27 种其他果蝇物种中特化的雄性味觉刚毛的数量和位置。尽管一些物种的模式与黑腹果蝇相似,但其他物种缺乏雄性特有的前部刚毛,但却有许多雄性特有的背部味觉刚毛。有些物种既有前部和背部雄性特有的刚毛,而有些则完全没有性别二态性。在一些亲缘关系较远的物种中,由于雄性特有的将祖先机械感觉刚毛转化为化学感觉身份,雄性的味觉刚毛数量远远多于雌性。这种性别二态性的程度和模式的变化可能会影响控制果蝇求偶的神经元回路的形成和功能,并有助于交配行为的进化。

相似文献

1
Interspecific variation in sex-specific gustatory organs in Drosophila.
J Comp Neurol. 2022 Oct;530(14):2439-2450. doi: 10.1002/cne.25340. Epub 2022 May 23.
3
ppk23-Dependent chemosensory functions contribute to courtship behavior in Drosophila melanogaster.
PLoS Genet. 2012;8(3):e1002587. doi: 10.1371/journal.pgen.1002587. Epub 2012 Mar 15.
4
Contribution of oenocytes and pheromones to courtship behaviour in Drosophila.
BMC Biochem. 2009 Aug 11;10:21. doi: 10.1186/1471-2091-10-21.
5
Drosophila pheromone-sensing neurons expressing the ppk25 ion channel subunit stimulate male courtship and female receptivity.
PLoS Genet. 2014 Mar 27;10(3):e1004238. doi: 10.1371/journal.pgen.1004238. eCollection 2014 Mar.
6
Gr39a, a highly diversified gustatory receptor in Drosophila, has a role in sexual behavior.
Behav Genet. 2011 Sep;41(5):746-53. doi: 10.1007/s10519-011-9461-6. Epub 2011 Mar 17.
7
Courtship initiation is stimulated by acoustic signals in Drosophila melanogaster.
PLoS One. 2008 Sep 19;3(9):e3246. doi: 10.1371/journal.pone.0003246.
8
Evolution of Mechanisms that Control Mating in Drosophila Males.
Cell Rep. 2019 May 28;27(9):2527-2536.e4. doi: 10.1016/j.celrep.2019.04.104.
9
The Drosophila female aphrodisiac pheromone activates ppk23(+) sensory neurons to elicit male courtship behavior.
Cell Rep. 2012 Jun 28;1(6):599-607. doi: 10.1016/j.celrep.2012.05.007. Epub 2012 May 24.
10
Suppression of male courtship by a Drosophila pheromone receptor.
Nat Neurosci. 2008 Aug;11(8):874-6. doi: 10.1038/nn.2161. Epub 2008 Jul 20.

引用本文的文献

1
Evolution of chemosensory tissues and cells across ecologically diverse Drosophilids.
Nat Commun. 2024 Feb 5;15(1):1047. doi: 10.1038/s41467-023-44558-4.

本文引用的文献

1
Sex-specific evolution of a Drosophila sensory system via interacting cis- and trans-regulatory changes.
Evol Dev. 2022 Mar;24(1-2):37-60. doi: 10.1111/ede.12398. Epub 2022 Mar 3.
2
Widespread introgression across a phylogeny of 155 Drosophila genomes.
Curr Biol. 2022 Jan 10;32(1):111-123.e5. doi: 10.1016/j.cub.2021.10.052. Epub 2021 Nov 16.
3
DrosoPhyla: Resources for Drosophilid Phylogeny and Systematics.
Genome Biol Evol. 2021 Aug 3;13(8). doi: 10.1093/gbe/evab179.
4
Large-scale characterization of sex pheromone communication systems in Drosophila.
Nat Commun. 2021 Jul 6;12(1):4165. doi: 10.1038/s41467-021-24395-z.
5
Contact-Chemosensory Evolution Underlying Reproductive Isolation in Species.
Front Behav Neurosci. 2020 Dec 4;14:597428. doi: 10.3389/fnbeh.2020.597428. eCollection 2020.
6
Evolution of sexually dimorphic pheromone profiles coincides with increased number of male-specific chemosensory organs in .
Ecol Evol. 2019 Nov 17;9(23):13608-13618. doi: 10.1002/ece3.5819. eCollection 2019 Dec.
7
Recent advances in the genetic basis of taste detection in Drosophila.
Cell Mol Life Sci. 2020 Mar;77(6):1087-1101. doi: 10.1007/s00018-019-03320-0. Epub 2019 Oct 9.
8
Modular tissue-specific regulation of underpins sexually dimorphic development in .
Development. 2019 Jul 25;146(14):dev178285. doi: 10.1242/dev.178285.
9
Evolution of Mechanisms that Control Mating in Drosophila Males.
Cell Rep. 2019 May 28;27(9):2527-2536.e4. doi: 10.1016/j.celrep.2019.04.104.
10
A novel sex difference in contact chemosensory neurons unveiled using single cell labeling.
J Neurogenet. 2019 Mar-Jun;33(2):116-124. doi: 10.1080/01677063.2018.1531858. Epub 2018 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验