Vasdev Roan A S, Preston Dan, Casey-Stevens Caitlin A, Martí-Centelles Vicente, Lusby Paul J, Garden Anna L, Crowley James D
Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand.
Inorg Chem. 2023 Feb 6;62(5):1833-1844. doi: 10.1021/acs.inorgchem.2c00937. Epub 2022 May 23.
High-symmetry metallosupramolecular architectures (MSAs) have been exploited for a range of applications including molecular recognition, catalysis, and drug delivery. Recently, there have been increasing efforts to enhance those applications by generating reduced-symmetry MSAs. Here we report our attempts to use supramolecular (dispersion and hydrogen-bonding) forces and solvophobic effects to generate isomerically pure [Pd(L)] cage architectures from a family of new reduced-symmetry ditopic tripyridyl ligands. The reduced-symmetry tripyridyl ligands featured either solvophilic polyether chains, solvophobic alkyl chains, or amino substituents. We show using NMR spectroscopy, high-performance liquid chromatography, X-ray diffraction data, and density functional theory calculations that the combination of dispersion forces and solvophobic effects does not provide any control of the [Pd(L)] isomer distribution with mixtures of all four cage isomers (HHHH, HHHT, -HHTT, or -HTHT, where H = head and T = tail) obtained in each case. More control was obtained by exploiting hydrogen-bonding interactions between amino units. While the cage assembly with a 3-amino-substituted tripyridyl ligand leads to a mixture of all four possible isomers, the related 2-amino-substituted tripyridyl ligand generated a -HHTT cage architecture. Formation of the -HHTT [Pd(L)] cage was confirmed using NMR studies and X-ray crystallography.
高对称性金属超分子结构(MSAs)已被用于一系列应用,包括分子识别、催化和药物递送。最近,人们越来越努力通过生成低对称性的MSAs来增强这些应用。在这里,我们报告了我们尝试利用超分子(分散和氢键)力以及疏溶剂效应,从一系列新的低对称性双齿三联吡啶配体生成异构体纯的[Pd(L)]笼状结构。低对称性的三联吡啶配体具有亲溶剂性聚醚链、疏溶剂性烷基链或氨基取代基。我们使用核磁共振光谱、高效液相色谱、X射线衍射数据和密度泛函理论计算表明,分散力和疏溶剂效应的组合无法控制[Pd(L)]异构体的分布,每种情况下都会得到所有四种笼状异构体(HHHH、HHHT、-HHTT或-HTHT,其中H = 头,T = 尾)的混合物。通过利用氨基单元之间的氢键相互作用获得了更多的控制。虽然带有3-氨基取代三联吡啶配体的笼状组装会导致所有四种可能异构体的混合物,但相关的2-氨基取代三联吡啶配体生成了-HHTT笼状结构。使用核磁共振研究和X射线晶体学证实了-HHTT [Pd(L)]笼的形成。