Sullivan Kaj V, Kidder James A, Junqueira Tassiane P, Vanhaecke Frank, Leybourne Matthew I
Department of Geological Sciences and Geological Engineering, Queens University, Kingston, ON, Canada; Atomic & Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Ghent, Belgium.
Geological Survey of Canada, Ottawa, Ontario, Canada.
Sci Total Environ. 2022 Sep 10;838(Pt 2):156084. doi: 10.1016/j.scitotenv.2022.156084. Epub 2022 May 20.
As a component of many minerals and an essential trace element in most aerobic organisms, the transition metal element Cu is important for studying reduction-oxidation (redox) interactions and metal cycling in the total environment (lithosphere, atmosphere, biosphere, hydrosphere, and anthroposphere). The "fractionation" or relative partitioning of the naturally occurring "heavy" (Cu) and "light" (Cu) isotope between two coexisting phases in a system occurs according to bonding environment and/or as a result of a slight difference in the rate at which these isotopes take part in physical processes and chemical reactions (in absence of equilibrium). Due to this behaviour, Cu isotopic analysis can be used to study a range of geochemical and biological processes that cannot be elucidated with Cu concentrations alone. The shift between Cu and Cu is accompanied by a large degree of Cu isotope fractionation, enabling the Cu isotope to be applied as a vector in mineral exploration, tracer of origin, transport, and fate of metal contaminants in the environment, biomonitor, and diagnostic/prognostic marker of disease, among other applications. In this contribution, we (1) discuss the analytical protocols that are currently available to perform Cu isotopic analysis, (2) provide a compilation of published δCu values for matrix reference materials, (3) review Cu isotope fractionation mechanisms, (4) highlight emerging applications of Cu isotopic analysis, and (5) discuss future research avenues.
作为许多矿物质的组成部分以及大多数需氧生物中的必需微量元素,过渡金属元素铜对于研究整个环境(岩石圈、大气圈、生物圈、水圈和人类圈)中的氧化还原相互作用和金属循环至关重要。在一个系统中,两种共存相之间天然存在的“重”(铜)和“轻”(铜)同位素的“分馏”或相对分配,会根据键合环境而发生,和/或由于这些同位素参与物理过程和化学反应的速率存在细微差异(在非平衡状态下)。由于这种行为,铜同位素分析可用于研究一系列仅靠铜浓度无法阐明的地球化学和生物过程。铜和铜之间的转变伴随着很大程度的铜同位素分馏,这使得铜同位素能够作为一种工具应用于矿产勘探、环境中金属污染物的来源、迁移和归宿的示踪剂、生物监测以及疾病的诊断/预后标志物等诸多方面。在本论文中,我们(1)讨论目前可用于进行铜同位素分析的分析方法,(2)汇编已发表的基体参考物质的δ铜值,(3)综述铜同位素分馏机制,(4)突出铜同位素分析的新兴应用,以及(5)讨论未来的研究方向。