文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肿瘤穿透性 PEG-脂质纳米盘递送 STING 激动剂可引发强大的抗癌免疫。

STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity.

机构信息

Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.

Department of Materials, Imperial College London, London, UK.

出版信息

Nat Mater. 2022 Jun;21(6):710-720. doi: 10.1038/s41563-022-01251-z. Epub 2022 May 23.


DOI:10.1038/s41563-022-01251-z
PMID:35606429
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9156412/
Abstract

Activation of the innate immune STimulator of INterferon Genes (STING) pathway potentiates antitumour immunity, but systemic delivery of STING agonists to tumours is challenging. We conjugated STING-activating cyclic dinucleotides (CDNs) to PEGylated lipids (CDN-PEG-lipids; PEG, polyethylene glycol) via a cleavable linker and incorporated them into lipid nanodiscs (LNDs), which are discoid nanoparticles formed by self-assembly. Compared to state-of-the-art liposomes, intravenously administered LNDs carrying CDN-PEG-lipid (LND-CDNs) exhibited more efficient penetration of tumours, exposing the majority of tumour cells to STING agonist. A single dose of LND-CDNs induced rejection of established tumours, coincident with immune memory against tumour rechallenge. Although CDNs were not directly tumoricidal, LND-CDN uptake by cancer cells correlated with robust T-cell activation by promoting CDN and tumour antigen co-localization in dendritic cells. LNDs thus appear promising as a vehicle for robust delivery of compounds throughout solid tumours, which can be exploited for enhanced immunotherapy.

摘要

先天免疫干扰素基因刺激物 (STING) 途径的激活增强了抗肿瘤免疫,但将 STING 激动剂全身递送至肿瘤具有挑战性。我们通过可裂解接头将 STING 激活的环二核苷酸 (CDN) 缀合到聚乙二醇化脂质 (CDN-PEG-脂质;PEG,聚乙二醇) 上,并将其纳入脂质纳米盘 (LND) 中,LND 是由自组装形成的盘状纳米颗粒。与最先进的脂质体相比,静脉内给予携带 CDN-PEG-脂质的 LND (LND-CDNs) 可更有效地穿透肿瘤,使大多数肿瘤细胞暴露于 STING 激动剂下。单次给予 LND-CDN 可引发已建立的肿瘤排斥反应,同时对肿瘤再挑战产生免疫记忆。尽管 CDN 本身不是直接的杀肿瘤剂,但 LND-CDN 被癌细胞摄取与通过促进 CDN 和肿瘤抗原在树突状细胞中的共定位来强烈激活 T 细胞相关。因此,LND 似乎很有前途,可以作为一种载体,将化合物有效地递送至整个实体瘤中,从而可以用于增强免疫治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/03850f3b50a6/41563_2022_1251_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/6070b983d93b/41563_2022_1251_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/cd922e8fa34b/41563_2022_1251_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/937503b64f7d/41563_2022_1251_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/1440abf7bebb/41563_2022_1251_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/c9c86f182980/41563_2022_1251_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/c7197505c68b/41563_2022_1251_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/307d07a27fba/41563_2022_1251_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/cd556f4ffb18/41563_2022_1251_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/848571a531f2/41563_2022_1251_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/cf7fd125b50b/41563_2022_1251_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/da1e58bd1501/41563_2022_1251_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/3acff31fea0b/41563_2022_1251_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/fc2a31a86600/41563_2022_1251_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/65ce6ff0fe98/41563_2022_1251_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/78f4cfdc68eb/41563_2022_1251_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/03850f3b50a6/41563_2022_1251_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/6070b983d93b/41563_2022_1251_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/cd922e8fa34b/41563_2022_1251_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/937503b64f7d/41563_2022_1251_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/1440abf7bebb/41563_2022_1251_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/c9c86f182980/41563_2022_1251_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/c7197505c68b/41563_2022_1251_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/307d07a27fba/41563_2022_1251_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/cd556f4ffb18/41563_2022_1251_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/848571a531f2/41563_2022_1251_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/cf7fd125b50b/41563_2022_1251_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/da1e58bd1501/41563_2022_1251_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/3acff31fea0b/41563_2022_1251_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/fc2a31a86600/41563_2022_1251_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/65ce6ff0fe98/41563_2022_1251_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/78f4cfdc68eb/41563_2022_1251_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f563/9156412/03850f3b50a6/41563_2022_1251_Fig16_ESM.jpg

相似文献

[1]
STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity.

Nat Mater. 2022-6

[2]
Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy.

Nat Nanotechnol. 2019-1-21

[3]
Discovery of novel Thieno[2,3-d]imidazole derivatives as agonists of human STING for antitumor immunotherapy using systemic administration.

Eur J Med Chem. 2022-8-5

[4]
Systemic nano-delivery of low-dose STING agonist targeted to CD103+ dendritic cells for cancer immunotherapy.

J Control Release. 2022-5

[5]
Polymersome-mediated cytosolic delivery of cyclic dinucleotide STING agonist enhances tumor immunotherapy.

Bioact Mater. 2022-3-4

[6]
Supramolecular Cyclic Dinucleotide Nanoparticles for STING-Mediated Cancer Immunotherapy.

ACS Nano. 2023-6-13

[7]
Nanoparticle delivery improves the pharmacokinetic properties of cyclic dinucleotide STING agonists to open a therapeutic window for intravenous administration.

J Control Release. 2021-2-10

[8]
Biodegradable STING agonist nanoparticles for enhanced cancer immunotherapy.

Nanomedicine. 2017-11-7

[9]
High potency STING agonists engage unique myeloid pathways to reverse pancreatic cancer immune privilege.

J Immunother Cancer. 2021-8

[10]
Combination of a STING Agonist and Photothermal Therapy Using Chitosan Hydrogels for Cancer Immunotherapy.

Biomacromolecules. 2023-6-12

引用本文的文献

[1]
Metal-organic frameworks activate the cGAS-STING pathway for cancer immunotherapy.

J Nanobiotechnology. 2025-8-21

[2]
Advances in nanomaterials for enhancing cGAS-STING pathway mediated anti-tumor treatment.

Mater Today Bio. 2025-8-11

[3]
Nanotechnology for immuno-oncology.

Nat Cancer. 2025-8-7

[4]
Nanobody-based bispecific antibody engagers targeting CTLA-4 or PD-L1 for cancer immunotherapy.

Nat Biomed Eng. 2025-7-16

[5]
Eliciting antitumor immunity via therapeutic cancer vaccines.

Cell Mol Immunol. 2025-7-9

[6]
Engineering STING Nanoadjuvants for spatiotemporally-tailored innate immunity stimulation and cancer vaccination therapy.

Nat Commun. 2025-7-1

[7]
Advances in Functionalized Nanoparticles for Osteoporosis Treatment.

Int J Nanomedicine. 2025-6-20

[8]
The activation of cGAS-STING pathway offers novel therapeutic opportunities in cancers.

Front Immunol. 2025-6-9

[9]
Immune targeting of triple-negative breast cancer through a clinically actionable STING agonist-CAR T cell platform.

Cell Rep Med. 2025-7-15

[10]
Near-infrared light-induced photothermal and immunotherapy system for lung cancer bone metastasis treatment with simultaneous bone repair.

Bioact Mater. 2025-6-10

本文引用的文献

[1]
Recent advances and discoveries in the mechanisms and functions of CAR T cells.

Nat Rev Cancer. 2021-3

[2]
Maintaining Safety with SARS-CoV-2 Vaccines.

N Engl J Med. 2021-2-18

[3]
Nanoparticle delivery improves the pharmacokinetic properties of cyclic dinucleotide STING agonists to open a therapeutic window for intravenous administration.

J Control Release. 2021-2-10

[4]
Head-to-Head Comparison of the Penetration Efficiency of Lipid-Based Nanoparticles into Tumor Spheroids.

ACS Omega. 2020-8-13

[5]
Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic.

Science. 2020-8-21

[6]
An orally available non-nucleotide STING agonist with antitumor activity.

Science. 2020-8-21

[7]
Tissue-Specific Factors Differentially Regulate the Expression of Antigen-Processing Enzymes During Dendritic Cell Ontogeny.

Front Immunol. 2020

[8]
Nanoparticle interactions with immune cells dominate tumor retention and induce T cell-mediated tumor suppression in models of breast cancer.

Sci Adv. 2020-3-25

[9]
Cysteine Cathepsins in Tumor-Associated Immune Cells.

Front Immunol. 2019-8-28

[10]
STING pathway agonism as a cancer therapeutic.

Immunol Rev. 2019-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索