文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过治疗性癌症疫苗激发抗肿瘤免疫力。

Eliciting antitumor immunity via therapeutic cancer vaccines.

作者信息

Peng Kun, Zhao Xiaoxue, Fu Yang-Xin, Liang Yong

机构信息

Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China.

State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing, China.

出版信息

Cell Mol Immunol. 2025 Jul 9. doi: 10.1038/s41423-025-01316-4.


DOI:10.1038/s41423-025-01316-4
PMID:40629076
Abstract

Therapeutic cancer vaccines aim to expand and activate antigen-specific T cells for the targeted elimination of cancer cells. While early clinical trials faced challenges due to suboptimal antigen-specific T-cell activation, recent advancements in antigen discovery and vaccine platform engineering have revitalized the field. This review provides a comprehensive overview of key tumor antigens, including tumor-associated antigens, viral oncoprotein antigens, neoantigens, and cryptic antigens, with a focus on their immunogenicity and therapeutic potential. Advances in our understanding of traditional cancer vaccination targets, in conjunction with the timely identification of novel antigen epitopes, have facilitated the strategic selection of vaccination targets. We also discuss the evolution of cancer vaccine platforms-spanning peptide-based formulations to advanced mRNA vectors-emphasizing innovative strategies to optimize antigen delivery efficiency and adjuvant effects. Efficient antigen delivery and adjuvant selection overcome immune tolerance and tumor-induced immunosuppression. Furthermore, we examine recent clinical trial data and emerging combination approaches that integrate cancer vaccines with other immunotherapies to increase efficacy. While significant progress has been made, challenges remain in improving vaccine-induced T-cell responses, overcoming immune suppression, and translating these advances into effective clinical interventions. Addressing these hurdles will be critical for realizing the full potential of cancer vaccines in immunotherapy.

摘要

治疗性癌症疫苗旨在扩增并激活抗原特异性T细胞,以靶向清除癌细胞。尽管早期临床试验因抗原特异性T细胞激活效果欠佳而面临挑战,但抗原发现和疫苗平台工程方面的最新进展为该领域注入了新的活力。本综述全面概述了关键肿瘤抗原,包括肿瘤相关抗原、病毒癌蛋白抗原、新抗原和隐蔽抗原,重点关注它们的免疫原性和治疗潜力。我们对传统癌症疫苗接种靶点的认识取得进展,同时及时鉴定出新的抗原表位,这有助于对接种靶点进行策略性选择。我们还讨论了癌症疫苗平台的演变——从基于肽的制剂到先进的mRNA载体——强调优化抗原递送效率和佐剂效应的创新策略。高效的抗原递送和佐剂选择可克服免疫耐受和肿瘤诱导的免疫抑制。此外,我们审视了近期的临床试验数据以及将癌症疫苗与其他免疫疗法相结合以提高疗效的新兴联合方法。尽管已取得重大进展,但在改善疫苗诱导的T细胞反应、克服免疫抑制以及将这些进展转化为有效的临床干预措施方面仍面临挑战。克服这些障碍对于实现癌症疫苗在免疫治疗中的全部潜力至关重要。

相似文献

[1]
Eliciting antitumor immunity via therapeutic cancer vaccines.

Cell Mol Immunol. 2025-7-9

[2]
Optimized polyepitope neoantigen DNA vaccines elicit neoantigen-specific immune responses in preclinical models and in clinical translation.

Genome Med. 2021-4-21

[3]
Immunomodulatory nanoparticles activate cytotoxic T cells for enhancement of the effect of cancer immunotherapy.

Nanoscale. 2024-10-3

[4]
DNA-based immunotherapy for cancer: In vivo approaches for recalcitrant targets.

Mol Ther. 2025-6-4

[5]
Oncolytic reovirus enhances the effect of CEA immunotherapy when combined with PD1-PDL1 inhibitor in a colorectal cancer model.

Immunotherapy. 2025-4

[6]
The Efficacy of Neoantigen-Loaded Dendritic Cell Vaccine Immunotherapy in Non-Metastatic Gastric Cancer.

Med Sci (Basel). 2025-7-11

[7]
A Milestone in the Shift from "Passive Killing" to "Active Immunomodulation" in Cancer Treatment-Progress in Melanoma Vaccine Research.

Curr Treat Options Oncol. 2025-7-17

[8]
Immunotherapeutic advances in glioma management: The rise of vaccine-based approaches.

CNS Neurosci Ther. 2024-9

[9]
In Situ Cancer Vaccines: Redefining Immune Activation in the Tumor Microenvironment.

ACS Biomater Sci Eng. 2025-5-12

[10]
Harnessing immunotherapy: cancer vaccines as novel therapeutic strategies for brain tumor.

Front Immunol. 2025-7-17

本文引用的文献

[1]
Membrane-IL12 adjuvant mRNA vaccine polarizes pre-effector T cells for optimized tumor control.

J Exp Med. 2025-9-1

[2]
An mRNA-LNP adjuvant enhances mRNA vaccine-induced CD8 T cell responses.

Sci Immunol. 2025-6-6

[3]
Poly(carboxybetaine) lipids enhance mRNA therapeutics efficacy and reduce their immunogenicity.

Nat Mater. 2025-5-29

[4]
Tumor antigens preferentially derive from unmutated genomic sequences in melanoma and non-small cell lung cancer.

Nat Cancer. 2025-5-22

[5]
Pancreatic cancer-restricted cryptic antigens are targets for T cell recognition.

Science. 2025-5-8

[6]
Controlling reactogenicity while preserving immunogenicity from a self-amplifying RNA vaccine by modulating nucleocytoplasmic transport.

NPJ Vaccines. 2025-4-29

[7]
Nanomaterials-driven in situ vaccination: a novel frontier in tumor immunotherapy.

J Hematol Oncol. 2025-4-17

[8]
Re-adenylation by TENT5A enhances efficacy of SARS-CoV-2 mRNA vaccines.

Nature. 2025-5

[9]
STING agonist-based ER-targeting molecules boost antigen cross-presentation.

Nature. 2025-5

[10]
HIF regulates multiple translated endogenous retroviruses: Implications for cancer immunotherapy.

Cell. 2025-4-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索