Suppr超能文献

通过动态核极化固态核磁共振光谱法改进合成聚合物的结构解析

Improved Structural Elucidation of Synthetic Polymers by Dynamic Nuclear Polarization Solid-State NMR Spectroscopy.

作者信息

Ouari Olivier, Phan Trang, Ziarelli Fabio, Casano Gilles, Aussenac Fabien, Thureau Pierre, Gigmes Didier, Tordo Paul, Viel Stéphane

机构信息

Aix-Marseille Université-CNRS, Institut de Chimie Radicalaire (UMR 7273), 13013 Marseille, France.

Aix-Marseille Université-CNRS, Fédération des Sciences Chimiques de Marseille (FR 1739), 13013 Marseille, France.

出版信息

ACS Macro Lett. 2013 Aug 20;2(8):715-719. doi: 10.1021/mz4003003. Epub 2013 Jul 24.

Abstract

Dynamic nuclear polarization (DNP) is shown to greatly improve the solid-state nuclear magnetic resonance (SSNMR) analysis of synthetic polymers by allowing structural assignment of intrinsically diluted NMR signals, which are typically not detected in conventional SSNMR. Specifically, SSNMR and DNP SSNMR were comparatively used to study functional polymers for which precise structural elucidation of chain ends is essential to control their reactivity and to eventually obtain advanced polymeric materials of complex architecture. Results show that the polymer chain-end signals, while hardly observable in conventional SSNMR, could be clearly identified in the DNP SSNMR spectrum owing to the increase in sensitivity afforded by the DNP setup (a factor ∼10 was achieved here), hence providing access to detailed structural characterization within realistic experimental times. This sizable gain in sensitivity opens new avenues for the characterization of "smart" functional polymeric materials and new analytical perspectives in polymer science.

摘要

动态核极化(DNP)已被证明可通过对本质上稀释的核磁共振信号进行结构归属,极大地改善合成聚合物的固态核磁共振(SSNMR)分析,而这些信号在传统的SSNMR中通常无法检测到。具体而言,SSNMR和DNP SSNMR被用于对比研究功能聚合物,对于这类聚合物,精确阐明链端结构对于控制其反应性并最终获得具有复杂结构的先进聚合物材料至关重要。结果表明,聚合物链端信号在传统SSNMR中几乎无法观测到,但由于DNP装置提供了灵敏度的提高(此处实现了约10倍的因子),在DNP SSNMR谱中可以清晰地识别出来,从而能够在实际实验时间内进行详细的结构表征。这种显著的灵敏度提升为“智能”功能聚合物材料的表征开辟了新途径,并为聚合物科学带来了新的分析视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验