Byeon Chang-Hyeock, Kinney Ted, Saricayir Hakan, Hansen Kasper Holst, Scott Faith, Srinivasa Sadhana, Wells Meghan K, Mentink-Vigier Frederic, Kim Wook, Akbey Ümit
bioRxiv. 2024 Sep 26:2024.09.25.614951. doi: 10.1101/2024.09.25.614951.
Bacterial biofilms cause persistent infections that are difficult to treat and contribute greatly to antimicrobial resistance. However, high-resolution structural information on native bacterial biofilms remain very limited. This limitation is primarily due to methodological constraints associated with analyzing complex native samples. Although solid-state NMR (ssNMR) is a promising method in this regard, its conventional applications typically suffer from sensitivity limitations, particularly for unlabeled native samples. Through the use of Dynamic Nuclear Polarization (DNP), we applied sensitivity enhanced ssNMR to characterize native colony biofilms. The increased ssNMR sensitivity by DNP enabled ultrafast structural characterization of the biofilm samples without isotope-labelling, and chemical or physical modification. We collected 1D C and N, and 2D H- C, H- N and C- C ssNMR spectra within seconds/minutes or hours, respectively which enabled us to identify biofilm components as polysaccharides, proteins, and eDNA effectively. This study represents the first application of ultrasensitive DNP ssNMR to characterize a native bacterial biofilm and expands the technical scope of ssNMR towards obtaining insights into the composition and structure of a wide array of and biofilm applications. Such versatility should greatly boost efforts to develop structure-guided approaches for combating infections caused by biofilm-forming microbes.
细菌生物膜会引发难以治疗的持续性感染,并在很大程度上导致了抗菌药物耐药性。然而,关于天然细菌生物膜的高分辨率结构信息仍然非常有限。这种限制主要是由于与分析复杂天然样品相关的方法学限制。尽管固态核磁共振(ssNMR)在这方面是一种很有前景的方法,但其传统应用通常存在灵敏度限制,特别是对于未标记的天然样品。通过使用动态核极化(DNP),我们应用灵敏度增强的ssNMR来表征天然菌落生物膜。DNP提高的ssNMR灵敏度能够在不进行同位素标记、化学或物理修饰的情况下对生物膜样品进行超快结构表征。我们分别在几秒/分钟或几小时内采集了一维碳谱和氮谱,以及二维氢-碳谱、氢-氮谱和碳-碳谱,这使我们能够有效地将生物膜成分鉴定为多糖、蛋白质和胞外DNA。这项研究代表了超灵敏DNP ssNMR首次应用于表征天然细菌生物膜,并将ssNMR的技术范围扩展到深入了解各种生物膜应用的组成和结构。这种多功能性应极大地推动开发针对由形成生物膜的微生物引起的感染的结构导向治疗方法的努力。