Suppr超能文献

具有多分辨率协作表示的级联并行人群计数网络

Cascaded parallel crowd counting network with multi-resolution collaborative representation.

作者信息

Lyu Lei, Han Run, Chen Ziming

机构信息

School of Information Science and Engineering, Shandong Normal University, Jinan, 250358 China.

Shandong Provincial Key Laboratory for Distributed Computer Software Novel Technology, Jinan, 250358 China.

出版信息

Appl Intell (Dordr). 2023;53(3):3002-3016. doi: 10.1007/s10489-022-03639-5. Epub 2022 May 19.

Abstract

Accurately estimating the size and density distribution of a crowd from images is of great importance to public safety and crowd management during the COVID-19 pandemic, but it is very challenging as it is affected by many complex factors, including perspective distortion and background noise information. In this paper, we propose a novel multi-resolution collaborative representation framework called the cascaded parallel network (CP-Net), consisting of three parallel scale-specific branches connected in a cascading mode. In the framework, the three cascaded multi-resolution branches efficiently capture multi-scale features through their specific receptive fields. Additionally, multi-level feature fusion and information filtering are performed continuously on each branch to resist noise interference and perspective distortion. Moreover, we design an information exchange module across independent branches to refine the features extracted by each specific branch and deal with perspective distortion by using complementary information of multiple resolutions. To further improve the robustness of the network to scale variance and generate high-quality density maps, we construct a multi-receptive field fusion module to aggregate multi-scale features more comprehensively. The performance of our proposed CP-Net is verified on the challenging counting datasets (UCF_CC_50, UCF-QNRF, Shanghai Tech A&B, and WorldExpo'10), and the experimental results demonstrate the superiority of the proposed method.

摘要

在新冠疫情期间,从图像中准确估计人群的规模和密度分布对于公共安全和人群管理至关重要,但由于受到包括透视畸变和背景噪声信息在内的许多复杂因素影响,这极具挑战性。在本文中,我们提出了一种名为级联并行网络(CP-Net)的新型多分辨率协作表示框架,它由以级联模式连接的三个并行的特定尺度分支组成。在该框架中,三个级联的多分辨率分支通过其特定的感受野有效地捕捉多尺度特征。此外,在每个分支上持续进行多级特征融合和信息过滤,以抵抗噪声干扰和透视畸变。而且,我们设计了一个跨独立分支的信息交换模块,以细化每个特定分支提取的特征,并利用多分辨率的互补信息处理透视畸变。为了进一步提高网络对尺度变化的鲁棒性并生成高质量的密度图,我们构建了一个多感受野融合模块,以更全面地聚合多尺度特征。我们提出的CP-Net的性能在具有挑战性的计数数据集(UCF_CC_50、UCF-QNRF、上海科技大学A&B和世博10)上得到了验证,实验结果证明了所提方法的优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe1c/9117858/7d08bb47ac3a/10489_2022_3639_Fig1_HTML.jpg

相似文献

1
Cascaded parallel crowd counting network with multi-resolution collaborative representation.
Appl Intell (Dordr). 2023;53(3):3002-3016. doi: 10.1007/s10489-022-03639-5. Epub 2022 May 19.
2
An Adaptive Multi-Scale Network Based on Depth Information for Crowd Counting.
Sensors (Basel). 2023 Sep 11;23(18):7805. doi: 10.3390/s23187805.
3
Embedding Perspective Analysis Into Multi-Column Convolutional Neural Network for Crowd Counting.
IEEE Trans Image Process. 2021;30:1395-1407. doi: 10.1109/TIP.2020.3043122. Epub 2020 Dec 29.
4
COMAL: compositional multi-scale feature enhanced learning for crowd counting.
Multimed Tools Appl. 2022;81(15):20541-20560. doi: 10.1007/s11042-022-12249-9. Epub 2022 Mar 11.
5
Context-Aware Multi-Scale Aggregation Network for Congested Crowd Counting.
Sensors (Basel). 2022 Apr 22;22(9):3233. doi: 10.3390/s22093233.
6
Multiscale Aggregate Networks with Dense Connections for Crowd Counting.
Comput Intell Neurosci. 2021 Nov 11;2021:9996232. doi: 10.1155/2021/9996232. eCollection 2021.
7
Smart Camera Aware Crowd Counting via Multiple Task Fractional Stride Deep Learning.
Sensors (Basel). 2019 Mar 18;19(6):1346. doi: 10.3390/s19061346.
8
Crowd Counting Based on Multiscale Spatial Guided Perception Aggregation Network.
IEEE Trans Neural Netw Learn Syst. 2024 Dec;35(12):17465-17478. doi: 10.1109/TNNLS.2023.3304348. Epub 2024 Dec 2.
9
Congested Crowd Counting via Adaptive Multi-Scale Context Learning.
Sensors (Basel). 2021 May 29;21(11):3777. doi: 10.3390/s21113777.
10
DMPNet: densely connected multi-scale pyramid networks for crowd counting.
PeerJ Comput Sci. 2022 Mar 18;8:e902. doi: 10.7717/peerj-cs.902. eCollection 2022.

引用本文的文献

1
Diffusion-/perfusion-weighted imaging fusion to automatically identify stroke within 4.5 h.
Eur Radiol. 2024 Oct;34(10):6808-6819. doi: 10.1007/s00330-024-10619-5. Epub 2024 Mar 15.

本文引用的文献

1
Dense Attention Fluid Network for Salient Object Detection in Optical Remote Sensing Images.
IEEE Trans Image Process. 2021;30:1305-1317. doi: 10.1109/TIP.2020.3042084. Epub 2020 Dec 23.
2
Image quality assessment: from error visibility to structural similarity.
IEEE Trans Image Process. 2004 Apr;13(4):600-12. doi: 10.1109/tip.2003.819861.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验