Suppr超能文献

上下文感知多尺度聚合网络用于拥挤人群计数。

Context-Aware Multi-Scale Aggregation Network for Congested Crowd Counting.

机构信息

School of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai 201418, China.

School of Cyber Security and Computer, Hebei University, Baoding 071000, China.

出版信息

Sensors (Basel). 2022 Apr 22;22(9):3233. doi: 10.3390/s22093233.

Abstract

In this paper, we propose a context-aware multi-scale aggregation network named CMSNet for dense crowd counting, which effectively uses contextual information and multi-scale information to conduct crowd density estimation. To achieve this, a context-aware multi-scale aggregation module (CMSM) is designed. Specifically, CMSM consists of a multi-scale aggregation module (MSAM) and a context-aware module (CAM). The MSAM is used to obtain multi-scale crowd features. The CAM is used to enhance the extracted multi-scale crowd feature with more context information to efficiently recognize crowds. We conduct extensive experiments on three challenging datasets, i.e., ShanghaiTech, UCF_CC_50, and UCF-QNRF, and the results showed that our model yielded compelling performance against the other state-of-the-art methods, which demonstrate the effectiveness of our method for congested crowd counting.

摘要

在本文中,我们提出了一种名为 CMSNet 的上下文感知多尺度聚合网络,用于密集人群计数,该网络有效地利用上下文信息和多尺度信息进行人群密度估计。为此,我们设计了一种上下文感知多尺度聚合模块(CMSM)。具体来说,CMSM 由多尺度聚合模块(MSAM)和上下文感知模块(CAM)组成。MSAM 用于获取多尺度人群特征。CAM 用于利用更多上下文信息增强提取的多尺度人群特征,从而有效地识别人群。我们在三个具有挑战性的数据集(即上海科技大学、UCF_CC_50 和 UCF-QNRF)上进行了广泛的实验,结果表明,我们的模型在拥挤人群计数方面的性能优于其他最先进的方法,这证明了我们的方法对于拥挤人群计数的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa37/9101686/f0b3ba04c4d5/sensors-22-03233-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验