Suppr超能文献

医学研究中转化影响的深度预测。

Deep forecasting of translational impact in medical research.

作者信息

Nelson Amy P K, Gray Robert J, Ruffle James K, Watkins Henry C, Herron Daniel, Sorros Nick, Mikhailov Danil, Cardoso M Jorge, Ourselin Sebastien, McNally Nick, Williams Bryan, Rees Geraint E, Nachev Parashkev

机构信息

High Dimensional Neurology Group, UCL Queen Square Institute of Neurology, University College London, Russell Square House, Bloomsbury, London WC1B 5EH, UK.

Research & Development, NIHR University College London Hospitals Biomedical Research Centre, London WC1E 6BT, UK.

出版信息

Patterns (N Y). 2022 Apr 8;3(5):100483. doi: 10.1016/j.patter.2022.100483. eCollection 2022 May 13.

Abstract

The value of biomedical research-a $1.7 trillion annual investment-is ultimately determined by its downstream, real-world impact, whose predictability from simple citation metrics remains unquantified. Here we sought to determine the comparative predictability of future real-world translation-as indexed by inclusion in patents, guidelines, or policy documents-from complex models of title/abstract-level content versus citations and metadata alone. We quantify predictive performance out of sample, ahead of time, across major domains, using the entire corpus of biomedical research captured by Microsoft Academic Graph from 1990-2019, encompassing 43.3 million papers. We show that citations are only moderately predictive of translational impact. In contrast, high-dimensional models of titles, abstracts, and metadata exhibit high fidelity (area under the receiver operating curve [AUROC] > 0.9), generalize across time and domain, and transfer to recognizing papers of Nobel laureates. We argue that content-based impact models are superior to conventional, citation-based measures and sustain a stronger evidence-based claim to the objective measurement of translational potential.

摘要

生物医学研究的价值——每年1.7万亿美元的投资——最终取决于其下游的实际影响,而简单引用指标对其可预测性仍未得到量化。在这里,我们试图确定未来实际转化(以纳入专利、指南或政策文件为指标)相对于仅基于标题/摘要级内容的复杂模型与引用和元数据而言的相对可预测性。我们使用微软学术图谱从1990年至2019年捕获的生物医学研究全量语料库(涵盖4330万篇论文),提前对样本外跨主要领域的预测性能进行了量化。我们表明,引用对转化影响的预测能力仅为中等。相比之下,标题、摘要和元数据的高维模型表现出高保真度(受试者工作特征曲线下面积[AUROC]>0.9),能跨时间和领域进行泛化,并能用于识别诺贝尔奖获得者的论文。我们认为,基于内容的影响模型优于传统的基于引用的衡量方法,并且在对转化潜力进行客观测量方面,能提供更强有力的基于证据的依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e148/9122964/5fec02862dcc/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验