Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel.
Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel.
Adv Mater. 2022 Aug;34(31):e2202242. doi: 10.1002/adma.202202242. Epub 2022 Jun 26.
Spectacular colors and visual phenomena in animals are produced by light interference from highly reflective guanine crystals. Little is known about how organisms regulate crystal morphology to tune the optics of these systems. By following guanine crystal formation in developing spiders, a crystallization mechanism is elucidated. Guanine crystallization is a "non-classical," multistep process involving a progressive ordering of states. Crystallization begins with nucleation of partially ordered nanogranules from a disordered precursor phase. Growth proceeds by orientated attachment of the nanogranules into platelets which coalesce into single crystals, via progressive relaxation of structural defects. Despite their prismatic morphology, the platelet texture is retained in the final crystals, which are composites of crystal lamellae and interlamellar sheets. Interactions between the macromolecular sheets and the planar face of guanine appear to direct nucleation, favoring platelet formation. These findings provide insights on how organisms control the morphology and optical properties of molecular crystals.
动物身上壮观的颜色和视觉现象是由高度反射的鸟嘌呤晶体的光干涉产生的。目前人们对生物体如何调节晶体形态以调整这些系统的光学性质知之甚少。通过跟踪发育中的蜘蛛身上的鸟嘌呤晶体形成,阐明了一种结晶机制。鸟嘌呤结晶是一个“非经典”的多步骤过程,涉及状态的逐步有序化。结晶始于部分有序纳米颗粒从无序前体相的成核。通过纳米颗粒的取向附着,生长进展为小板片,小板片通过结构缺陷的逐步松弛而聚结为单晶,尽管它们具有棱柱形形态,但在最终的晶体中保留了小板片纹理,这些晶体是晶体薄片和层间片的复合材料。大分子片层与鸟嘌呤的平面之间的相互作用似乎可以指导成核,有利于小板片的形成。这些发现为生物体如何控制分子晶体的形态和光学性质提供了深入了解。